Properties

Label 975.h
Number of curves $1$
Conductor $975$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("h1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 975.h1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(3\)\(1 - T\)
\(5\)\(1\)
\(13\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(2\) \( 1 + 2 T^{2}\) 1.2.a
\(7\) \( 1 + T + 7 T^{2}\) 1.7.b
\(11\) \( 1 + T + 11 T^{2}\) 1.11.b
\(17\) \( 1 + T + 17 T^{2}\) 1.17.b
\(19\) \( 1 + 4 T + 19 T^{2}\) 1.19.e
\(23\) \( 1 + 3 T + 23 T^{2}\) 1.23.d
\(29\) \( 1 + 8 T + 29 T^{2}\) 1.29.i
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 975.h do not have complex multiplication.

Modular form 975.2.a.h

Copy content sage:E.q_eigenform(10)
 
\(q + q^{3} - 2 q^{4} - q^{7} + q^{9} - q^{11} - 2 q^{12} - q^{13} + 4 q^{16} - q^{17} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 975.h

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
975.h1 975j1 \([0, 1, 1, -3, 29]\) \(-32768/3159\) \(-394875\) \([]\) \(80\) \(-0.24658\) \(\Gamma_0(N)\)-optimal