Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2=x^3-26364x-5026736\)
|
(homogenize, simplify) |
\(y^2z=x^3-26364xz^2-5026736z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-26364x-5026736\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(222, 248)$ | $4.4661306801864745421921729321$ | $\infty$ |
Integral points
\((222,\pm 248)\)
Invariants
Conductor: | $N$ | = | \( 97344 \) | = | $2^{6} \cdot 3^{2} \cdot 13^{2}$ |
|
Discriminant: | $\Delta$ | = | $-9743035524857856$ | = | $-1 \cdot 2^{14} \cdot 3^{6} \cdot 13^{8} $ |
|
j-invariant: | $j$ | = | \( -208 \) | = | $-1 \cdot 2^{4} \cdot 13$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $1.7525008589730637133418659545$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-1.3154432343219518173781857667$ |
|
||
$abc$ quality: | $Q$ | ≈ | $0.7100032029945751$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $3.8641549495905565$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
Mordell-Weil rank: | $r$ | = | $ 1$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $4.4661306801864745421921729321$ |
|
Real period: | $\Omega$ | ≈ | $0.16945000059451239116689038330$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 8 $ = $ 2^{2}\cdot2\cdot1 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $1$ |
|
Special value: | $ L'(E,1)$ | ≈ | $6.0542867713021451289274821630 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 6.054286771 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.169450 \cdot 4.466131 \cdot 8}{1^2} \\ & \approx 6.054286771\end{aligned}$$
Modular invariants
Modular form 97344.2.a.x
For more coefficients, see the Downloads section to the right.
Modular degree: | 599040 |
|
$ \Gamma_0(N) $-optimal: | yes | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 3 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $4$ | $I_{4}^{*}$ | additive | -1 | 6 | 14 | 0 |
$3$ | $2$ | $I_0^{*}$ | additive | -1 | 2 | 6 | 0 |
$13$ | $1$ | $IV^{*}$ | additive | 1 | 2 | 8 | 0 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2G | 4.2.0.1 |
$3$ | 3B | 9.12.0.2 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 936 = 2^{3} \cdot 3^{2} \cdot 13 \), index $288$, genus $6$, and generators
$\left(\begin{array}{rr} 1 & 36 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 36 \\ 12 & 433 \end{array}\right),\left(\begin{array}{rr} 727 & 900 \\ 0 & 935 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 36 & 1 \end{array}\right),\left(\begin{array}{rr} 449 & 900 \\ 504 & 413 \end{array}\right),\left(\begin{array}{rr} 646 & 927 \\ 867 & 49 \end{array}\right),\left(\begin{array}{rr} 701 & 900 \\ 351 & 935 \end{array}\right),\left(\begin{array}{rr} 13 & 6 \\ 886 & 913 \end{array}\right),\left(\begin{array}{rr} 901 & 36 \\ 900 & 37 \end{array}\right),\left(\begin{array}{rr} 19 & 27 \\ 801 & 892 \end{array}\right)$.
The torsion field $K:=\Q(E[936])$ is a degree-$543449088$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/936\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | additive | $2$ | \( 1521 = 3^{2} \cdot 13^{2} \) |
$3$ | additive | $2$ | \( 10816 = 2^{6} \cdot 13^{2} \) |
$13$ | additive | $74$ | \( 576 = 2^{6} \cdot 3^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
3.
Its isogeny class 97344.x
consists of 2 curves linked by isogenies of
degree 3.
Twists
The minimal quadratic twist of this elliptic curve is 676.b2, its twist by $312$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{6}) \) | \(\Z/3\Z\) | not in database |
$3$ | 3.1.676.1 | \(\Z/2\Z\) | not in database |
$6$ | 6.0.1827904.2 | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$6$ | 6.0.526436352.5 | \(\Z/3\Z\) | not in database |
$6$ | 6.2.1579309056.7 | \(\Z/6\Z\) | not in database |
$12$ | deg 12 | \(\Z/4\Z\) | not in database |
$12$ | deg 12 | \(\Z/3\Z \oplus \Z/3\Z\) | not in database |
$12$ | deg 12 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$18$ | 18.6.3939139644758457623947247616.2 | \(\Z/9\Z\) | not in database |
$18$ | 18.0.2334304974671678591968739328.1 | \(\Z/6\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | add | add | ord | ord | ss | add | ord | ord | ord | ord | ord | ord | ord | ord | ord |
$\lambda$-invariant(s) | - | - | 1 | 1 | 1,1 | - | 1 | 1 | 1 | 3 | 1 | 1 | 1 | 1 | 1 |
$\mu$-invariant(s) | - | - | 0 | 0 | 0,0 | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
Note: $p$-adic regulator data only exists for primes $p\ge 5$ of good ordinary reduction.