Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2=x^3+301236x-85080944\)
|
(homogenize, simplify) |
\(y^2z=x^3+301236xz^2-85080944z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3+301236x-85080944\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(598784/961, 552955788/29791)$ | $11.990344753004354007169978985$ | $\infty$ |
Integral points
None
Invariants
Conductor: | $N$ | = | \( 97344 \) | = | $2^{6} \cdot 3^{2} \cdot 13^{2}$ |
|
Discriminant: | $\Delta$ | = | $-4876593553930715136$ | = | $-1 \cdot 2^{42} \cdot 3^{8} \cdot 13^{2} $ |
|
j-invariant: | $j$ | = | \( \frac{93603087383}{150994944} \) | = | $2^{-24} \cdot 3^{-2} \cdot 13 \cdot 1931^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.2710600361362152180333800921$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.25454156138531961886766138452$ |
|
||
$abc$ quality: | $Q$ | ≈ | $1.0580983204947527$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.356725147844099$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
Mordell-Weil rank: | $r$ | = | $ 1$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $11.990344753004354007169978985$ |
|
Real period: | $\Omega$ | ≈ | $0.12829823780995793190305091324$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 4 $ = $ 2\cdot2\cdot1 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $1$ |
|
Special value: | $ L'(E,1)$ | ≈ | $6.1533604101773356455671921923 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 6.153360410 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.128298 \cdot 11.990345 \cdot 4}{1^2} \\ & \approx 6.153360410\end{aligned}$$
Modular invariants
Modular form 97344.2.a.u
For more coefficients, see the Downloads section to the right.
Modular degree: | 1769472 |
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 3 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $2$ | $I_{32}^{*}$ | additive | -1 | 6 | 42 | 24 |
$3$ | $2$ | $I_{2}^{*}$ | additive | -1 | 2 | 8 | 2 |
$13$ | $1$ | $II$ | additive | 1 | 2 | 2 | 0 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2G | 4.2.0.1 |
$3$ | 3B | 3.4.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 312 = 2^{3} \cdot 3 \cdot 13 \), index $32$, genus $0$, and generators
$\left(\begin{array}{rr} 259 & 303 \\ 101 & 284 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 12 & 1 \end{array}\right),\left(\begin{array}{rr} 77 & 300 \\ 39 & 311 \end{array}\right),\left(\begin{array}{rr} 301 & 12 \\ 300 & 13 \end{array}\right),\left(\begin{array}{rr} 57 & 5 \\ 79 & 4 \end{array}\right),\left(\begin{array}{rr} 4 & 9 \\ 3 & 7 \end{array}\right),\left(\begin{array}{rr} 1 & 12 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 155 & 303 \\ 153 & 284 \end{array}\right),\left(\begin{array}{rr} 5 & 2 \\ 274 & 297 \end{array}\right)$.
The torsion field $K:=\Q(E[312])$ is a degree-$60383232$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/312\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | additive | $2$ | \( 1521 = 3^{2} \cdot 13^{2} \) |
$3$ | additive | $8$ | \( 10816 = 2^{6} \cdot 13^{2} \) |
$13$ | additive | $38$ | \( 576 = 2^{6} \cdot 3^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
3.
Its isogeny class 97344.u
consists of 2 curves linked by isogenies of
degree 3.
Twists
The minimal quadratic twist of this elliptic curve is 1014.f2, its twist by $24$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{-26}) \) | \(\Z/3\Z\) | not in database |
$3$ | 3.1.676.1 | \(\Z/2\Z\) | not in database |
$6$ | 6.0.1827904.2 | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$6$ | 6.2.33676001828352.4 | \(\Z/3\Z\) | not in database |
$6$ | 6.0.760408064.2 | \(\Z/6\Z\) | not in database |
$12$ | deg 12 | \(\Z/4\Z\) | not in database |
$12$ | deg 12 | \(\Z/3\Z \oplus \Z/3\Z\) | not in database |
$12$ | 12.0.2312881695184912384.31 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$18$ | 18.0.90526928024249171366488005343422191763456.4 | \(\Z/9\Z\) | not in database |
$18$ | 18.2.2444227056654727626895176144272399177613312.1 | \(\Z/6\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | add | add | ord | ord | ord | add | ord | ord | ord | ord | ord | ord | ord | ord | ord |
$\lambda$-invariant(s) | - | - | 1 | 1 | 1 | - | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
$\mu$-invariant(s) | - | - | 0 | 0 | 0 | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.