Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
| \(y^2=x^3-64876x-6338640\) | (homogenize, simplify) | 
| \(y^2z=x^3-64876xz^2-6338640z^3\) | (dehomogenize, simplify) | 
| \(y^2=x^3-64876x-6338640\) | (homogenize, minimize) | 
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order | 
|---|---|---|
| $(-147, 147)$ | $2.4181252049481508047830178968$ | $\infty$ | 
| $(-140, 0)$ | $0$ | $2$ | 
| $(294, 0)$ | $0$ | $2$ | 
Integral points
      
    \( \left(-154, 0\right) \), \((-147,\pm 147)\), \( \left(-140, 0\right) \), \( \left(294, 0\right) \), \((728,\pm 18228)\), \((742,\pm 18816)\), \((6999846,\pm 18519648000)\)
    
    
    
        
    
    
        
    
      
Invariants
| Conductor: | $N$ | = | \( 97216 \) | = | $2^{6} \cdot 7^{2} \cdot 31$ |  | 
| Discriminant: | $\Delta$ | = | $118552725028864$ | = | $2^{20} \cdot 7^{6} \cdot 31^{2} $ |  | 
| j-invariant: | $j$ | = | \( \frac{979146657}{3844} \) | = | $2^{-2} \cdot 3^{3} \cdot 31^{-2} \cdot 331^{3}$ |  | 
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |  | ||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $1.5580245695685674349320890182$ |  | ||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.45465127579900718174643553571$ |  | ||
| $abc$ quality: | $Q$ | ≈ | $1.0250423431234554$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $3.9055734066878958$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |  | 
| Mordell-Weil rank: | $r$ | = | $ 1$ |  | 
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $2.4181252049481508047830178968$ |  | 
| Real period: | $\Omega$ | ≈ | $0.29921343679942179620386993426$ |  | 
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 32 $ = $ 2^{2}\cdot2^{2}\cdot2 $ |  | 
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $4$ |  | 
| Special value: | $ L'(E,1)$ | ≈ | $5.7882844254707391914463507933 $ |  | 
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $4$ = $2^2$ (rounded) |  | 
BSD formula
$$\begin{aligned} 5.788284425 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{4 \cdot 0.299213 \cdot 2.418125 \cdot 32}{4^2} \\ & \approx 5.788284425\end{aligned}$$
Modular invariants
Modular form 97216.2.a.x
For more coefficients, see the Downloads section to the right.
| Modular degree: | 294912 |  | 
| $ \Gamma_0(N) $-optimal: | no | |
| Manin constant: | 1 |  | 
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 3 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ | 
|---|---|---|---|---|---|---|---|
| $2$ | $4$ | $I_{10}^{*}$ | additive | 1 | 6 | 20 | 2 | 
| $7$ | $4$ | $I_0^{*}$ | additive | -1 | 2 | 6 | 0 | 
| $31$ | $2$ | $I_{2}$ | split multiplicative | -1 | 1 | 2 | 2 | 
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image | 
|---|---|---|
| $2$ | 2Cs | 8.12.0.3 | 
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 1736 = 2^{3} \cdot 7 \cdot 31 \), index $48$, genus $0$, and generators
$\left(\begin{array}{rr} 1 & 0 \\ 4 & 1 \end{array}\right),\left(\begin{array}{rr} 561 & 252 \\ 378 & 505 \end{array}\right),\left(\begin{array}{rr} 991 & 0 \\ 0 & 1735 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 867 & 742 \\ 0 & 1735 \end{array}\right),\left(\begin{array}{rr} 1303 & 252 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1733 & 4 \\ 1732 & 5 \end{array}\right)$.
The torsion field $K:=\Q(E[1736])$ is a degree-$57596313600$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/1736\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor | 
|---|---|---|---|
| $2$ | additive | $2$ | \( 49 = 7^{2} \) | 
| $7$ | additive | $26$ | \( 1984 = 2^{6} \cdot 31 \) | 
| $31$ | split multiplicative | $32$ | \( 3136 = 2^{6} \cdot 7^{2} \) | 
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2.
Its isogeny class 97216.x
consists of 4 curves linked by isogenies of
degrees dividing 4.
Twists
The minimal quadratic twist of this elliptic curve is 62.a3, its twist by $-56$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z \oplus \Z/{2}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve | 
|---|---|---|---|
| $4$ | \(\Q(\sqrt{14}, \sqrt{-31})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database | 
| $4$ | \(\Q(\sqrt{2}, \sqrt{-7})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database | 
| $4$ | \(\Q(\sqrt{7}, \sqrt{62})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database | 
| $8$ | deg 8 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database | 
| $16$ | 16.0.21117268020957937382075662336.1 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database | 
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database | 
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database | 
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database | 
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | add | ss | ord | add | ss | ord | ord | ord | ord | ord | split | ord | ord | ord | ord | 
| $\lambda$-invariant(s) | - | 3,1 | 1 | - | 1,1 | 1 | 1 | 1 | 1 | 1 | 4 | 1 | 1 | 1 | 1 | 
| $\mu$-invariant(s) | - | 0,0 | 0 | - | 0,0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.
