Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
| 
    \(y^2=x^3-x^2-4396x-168804\)
    
    
    
         | 
        (homogenize, simplify) | 
| 
    \(y^2z=x^3-x^2z-4396xz^2-168804z^3\)
    
    
    
         | 
        (dehomogenize, simplify) | 
| 
    \(y^2=x^3-356103x-124126398\)
    
    
    
         | 
        (homogenize, minimize) | 
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order | 
|---|---|---|
| $(24286616341/60372900, 3723346968639661/469097433000)$ | $21.612946638456919259057681387$ | $\infty$ | 
| $(81, 0)$ | $0$ | $2$ | 
Integral points
      
    \( \left(81, 0\right) \)
    
    
    
        
    
    
        
    
      
Invariants
| Conductor: | $N$ | = | \( 9680 \) | = | $2^{4} \cdot 5 \cdot 11^{2}$ | 
     | 
        
| Discriminant: | $\Delta$ | = | $-7086244000000$ | = | $-1 \cdot 2^{8} \cdot 5^{6} \cdot 11^{6} $ | 
     | 
        
| j-invariant: | $j$ | = | \( -\frac{20720464}{15625} \) | = | $-1 \cdot 2^{4} \cdot 5^{-6} \cdot 109^{3}$ | 
     | 
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) | 
     | 
        ||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $1.1648772754976928012631843876$ | 
     | 
        ||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.49616848127478934371260881569$ | 
     | 
        ||
| $abc$ quality: | $Q$ | ≈ | $0.9589363178944194$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.098296928452636$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ | 
     | 
        
| Mordell-Weil rank: | $r$ | = | $ 1$ | 
     | 
        
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $21.612946638456919259057681387$ | 
     | 
| Real period: | $\Omega$ | ≈ | $0.28386038221470146948773519377$ | 
     | 
        
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 4 $ = $ 1\cdot2\cdot2 $ | 
     | 
        
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ | 
     | 
        
| Special value: | $ L'(E,1)$ | ≈ | $6.1350592935783283946559775734 $ | 
     | 
        
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) | 
     | 
        
BSD formula
$$\begin{aligned} 6.135059294 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.283860 \cdot 21.612947 \cdot 4}{2^2} \\ & \approx 6.135059294\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
| Modular degree: | 17280 | 
     | 
        
| $ \Gamma_0(N) $-optimal: | no | |
| Manin constant: | 1 | 
     | 
        
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 3 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ | 
|---|---|---|---|---|---|---|---|
| $2$ | $1$ | $I_0^{*}$ | additive | -1 | 4 | 8 | 0 | 
| $5$ | $2$ | $I_{6}$ | nonsplit multiplicative | 1 | 1 | 6 | 6 | 
| $11$ | $2$ | $I_0^{*}$ | additive | -1 | 2 | 6 | 0 | 
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image | 
|---|---|---|
| $2$ | 2B | 4.6.0.5 | 
| $3$ | 3B | 3.4.0.1 | 
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 1320 = 2^{3} \cdot 3 \cdot 5 \cdot 11 \), index $384$, genus $9$, and generators
$\left(\begin{array}{rr} 1297 & 24 \\ 1296 & 25 \end{array}\right),\left(\begin{array}{rr} 661 & 264 \\ 726 & 265 \end{array}\right),\left(\begin{array}{rr} 1209 & 836 \\ 1177 & 307 \end{array}\right),\left(\begin{array}{rr} 13 & 24 \\ 612 & 13 \end{array}\right),\left(\begin{array}{rr} 1 & 24 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 15 & 16 \\ 314 & 335 \end{array}\right),\left(\begin{array}{rr} 119 & 0 \\ 0 & 1319 \end{array}\right),\left(\begin{array}{rr} 881 & 264 \\ 220 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 24 & 1 \end{array}\right),\left(\begin{array}{rr} 837 & 1210 \\ 44 & 221 \end{array}\right)$.
The torsion field $K:=\Q(E[1320])$ is a degree-$1216512000$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/1320\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor | 
|---|---|---|---|
| $2$ | additive | $2$ | \( 121 = 11^{2} \) | 
| $3$ | good | $2$ | \( 1936 = 2^{4} \cdot 11^{2} \) | 
| $5$ | nonsplit multiplicative | $6$ | \( 1936 = 2^{4} \cdot 11^{2} \) | 
| $11$ | additive | $62$ | \( 80 = 2^{4} \cdot 5 \) | 
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2, 3 and 6.
Its isogeny class 9680t
consists of 4 curves linked by isogenies of
degrees dividing 6.
Twists
The minimal quadratic twist of this elliptic curve is 20a3, its twist by $44$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve | 
|---|---|---|---|
| $2$ | \(\Q(\sqrt{-1}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database | 
| $2$ | \(\Q(\sqrt{-33}) \) | \(\Z/6\Z\) | not in database | 
| $4$ | 4.2.48400.1 | \(\Z/4\Z\) | not in database | 
| $4$ | \(\Q(i, \sqrt{33})\) | \(\Z/2\Z \oplus \Z/6\Z\) | not in database | 
| $6$ | 6.2.248396544.3 | \(\Z/6\Z\) | not in database | 
| $8$ | 8.0.95951257600.6 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database | 
| $8$ | 8.0.37480960000.7 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database | 
| $8$ | 8.0.3035957760000.105 | \(\Z/12\Z\) | not in database | 
| $12$ | deg 12 | \(\Z/3\Z \oplus \Z/6\Z\) | not in database | 
| $12$ | deg 12 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database | 
| $16$ | deg 16 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database | 
| $16$ | deg 16 | \(\Z/8\Z\) | not in database | 
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database | 
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database | 
| $18$ | 18.0.73649192887175183626309632000000000000.1 | \(\Z/18\Z\) | not in database | 
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | add | ord | nonsplit | ord | add | ord | ord | ord | ord | ord | ord | ord | ord | ord | ord | 
| $\lambda$-invariant(s) | - | 3 | 1 | 1 | - | 1 | 3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 
| $\mu$-invariant(s) | - | 1 | 0 | 0 | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.