Properties

Label 96720bp
Number of curves $4$
Conductor $96720$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bp1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 96720bp have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 + T\)
\(5\)\(1 - T\)
\(13\)\(1 - T\)
\(31\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 + T + 7 T^{2}\) 1.7.b
\(11\) \( 1 - 5 T + 11 T^{2}\) 1.11.af
\(17\) \( 1 + 4 T + 17 T^{2}\) 1.17.e
\(19\) \( 1 - 3 T + 19 T^{2}\) 1.19.ad
\(23\) \( 1 - 3 T + 23 T^{2}\) 1.23.ad
\(29\) \( 1 + 29 T^{2}\) 1.29.a
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 96720bp do not have complex multiplication.

Modular form 96720.2.a.bp

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} - q^{5} - 2 q^{7} + q^{9} + 6 q^{11} + q^{13} + q^{15} - 6 q^{17} - 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 3 & 6 \\ 2 & 1 & 6 & 3 \\ 3 & 6 & 1 & 2 \\ 6 & 3 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 96720bp

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
96720.j4 96720bp1 \([0, -1, 0, -613176, -184605840]\) \(6224721371657832889/2942222400\) \(12051342950400\) \([2]\) \(912384\) \(1.8471\) \(\Gamma_0(N)\)-optimal
96720.j3 96720bp2 \([0, -1, 0, -616376, -182578320]\) \(6322686217296773689/135260510172840\) \(554027049667952640\) \([2]\) \(1824768\) \(2.1936\)  
96720.j2 96720bp3 \([0, -1, 0, -728616, -110135184]\) \(10443846301537515049/4758933504000000\) \(19492591632384000000\) \([2]\) \(2737152\) \(2.3964\)  
96720.j1 96720bp4 \([0, -1, 0, -5848616, 5370312816]\) \(5401609226997647595049/86393158323264000\) \(353866376492089344000\) \([2]\) \(5474304\) \(2.7430\)