Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2=x^3+x^2+95x+31775\)
|
(homogenize, simplify) |
|
\(y^2z=x^3+x^2z+95xz^2+31775z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3+7668x+23140944\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{4}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(5, 180)$ | $0.59572743296382617096394346442$ | $\infty$ |
| $(23, 216)$ | $0$ | $4$ |
Integral points
\( \left(-31, 0\right) \), \((-25,\pm 120)\), \((5,\pm 180)\), \((23,\pm 216)\), \((50,\pm 405)\), \((113,\pm 1224)\), \((119,\pm 1320)\), \((455,\pm 9720)\), \((179543,\pm 76077096)\)
Invariants
| Conductor: | $N$ | = | \( 960 \) | = | $2^{6} \cdot 3 \cdot 5$ |
|
| Discriminant: | $\Delta$ | = | $-435356467200$ | = | $-1 \cdot 2^{15} \cdot 3^{12} \cdot 5^{2} $ |
|
| j-invariant: | $j$ | = | \( \frac{2863288}{13286025} \) | = | $2^{3} \cdot 3^{-12} \cdot 5^{-2} \cdot 71^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $0.91221403049763656358558080838$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.045780054797704926814040656557$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $1.1738269518331081$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.988256737430975$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
| Mordell-Weil rank: | $r$ | = | $ 1$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $0.59572743296382617096394346442$ |
|
| Real period: | $\Omega$ | ≈ | $0.74032465949424338275650597154$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 96 $ = $ 2^{2}\cdot( 2^{2} \cdot 3 )\cdot2 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $4$ |
|
| Special value: | $ L'(E,1)$ | ≈ | $2.6461902537619458661382894246 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 2.646190254 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.740325 \cdot 0.595727 \cdot 96}{4^2} \\ & \approx 2.646190254\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
| Modular degree: | 1536 |
|
| $ \Gamma_0(N) $-optimal: | no | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 3 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $4$ | $I_{5}^{*}$ | additive | 1 | 6 | 15 | 0 |
| $3$ | $12$ | $I_{12}$ | split multiplicative | -1 | 1 | 12 | 12 |
| $5$ | $2$ | $I_{2}$ | split multiplicative | -1 | 1 | 2 | 2 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $2$ | 2B | 8.24.0.48 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has label 24.48.0-24.n.1.4, level \( 24 = 2^{3} \cdot 3 \), index $48$, genus $0$, and generators
$\left(\begin{array}{rr} 1 & 0 \\ 8 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 8 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 0 & 7 \\ 23 & 12 \end{array}\right),\left(\begin{array}{rr} 0 & 7 \\ 5 & 18 \end{array}\right),\left(\begin{array}{rr} 17 & 8 \\ 16 & 9 \end{array}\right),\left(\begin{array}{rr} 17 & 8 \\ 20 & 9 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 4 & 17 \end{array}\right),\left(\begin{array}{rr} 7 & 6 \\ 18 & 19 \end{array}\right)$.
The torsion field $K:=\Q(E[24])$ is a degree-$1536$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/24\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | additive | $4$ | \( 1 \) |
| $3$ | split multiplicative | $4$ | \( 320 = 2^{6} \cdot 5 \) |
| $5$ | split multiplicative | $6$ | \( 192 = 2^{6} \cdot 3 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2 and 4.
Its isogeny class 960h
consists of 4 curves linked by isogenies of
degrees dividing 4.
Twists
The minimal quadratic twist of this elliptic curve is 480e4, its twist by $8$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{4}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $2$ | \(\Q(\sqrt{-2}) \) | \(\Z/2\Z \oplus \Z/4\Z\) | 2.0.8.1-7200.2-q1 |
| $4$ | 4.2.18432.2 | \(\Z/8\Z\) | not in database |
| $8$ | 8.0.10485760000.8 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
| $8$ | 8.0.212336640000.14 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $8$ | 8.0.339738624.10 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $8$ | 8.2.358318080000.3 | \(\Z/12\Z\) | not in database |
| $16$ | deg 16 | \(\Z/16\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | add | split | split | ord | ord | ord | ord | ord | ss | ord | ord | ord | ord | ord | ord |
| $\lambda$-invariant(s) | - | 2 | 2 | 1 | 1 | 1 | 1 | 1 | 1,1 | 1 | 1 | 1 | 1 | 1 | 1 |
| $\mu$-invariant(s) | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0,0 | 0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.