Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2=x^3-2399088x-1878534992\)
|
(homogenize, simplify) |
|
\(y^2z=x^3-2399088xz^2-1878534992z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-2399088x-1878534992\)
|
(homogenize, minimize) |
Mordell-Weil group structure
trivial
Invariants
| Conductor: | $N$ | = | \( 95760 \) | = | $2^{4} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 19$ |
|
| Discriminant: | $\Delta$ | = | $-640754301205678141440$ | = | $-1 \cdot 2^{12} \cdot 3^{6} \cdot 5 \cdot 7 \cdot 19^{10} $ |
|
| j-invariant: | $j$ | = | \( -\frac{511416541770305536}{214587319023035} \) | = | $-1 \cdot 2^{12} \cdot 5^{-1} \cdot 7^{-1} \cdot 19^{-10} \cdot 151^{3} \cdot 331^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.7003708793216825480007337795$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $1.4579175544276823928858790396$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $0.9859446622395366$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.902582476325229$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ |
|
| Mordell-Weil rank: | $r$ | = | $ 0$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ |
|
| Real period: | $\Omega$ | ≈ | $0.059433719484814013554444146121$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 10 $ = $ 1\cdot1\cdot1\cdot1\cdot( 2 \cdot 5 ) $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $1$ |
|
| Special value: | $ L(E,1)$ | ≈ | $0.59433719484814013554444146121 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $1$ (exact) |
|
BSD formula
$$\begin{aligned} 0.594337195 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.059434 \cdot 1.000000 \cdot 10}{1^2} \\ & \approx 0.594337195\end{aligned}$$
Modular invariants
Modular form 95760.2.a.i
For more coefficients, see the Downloads section to the right.
| Modular degree: | 3600000 |
|
| $ \Gamma_0(N) $-optimal: | no | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 5 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $1$ | $II^{*}$ | additive | -1 | 4 | 12 | 0 |
| $3$ | $1$ | $I_0^{*}$ | additive | -1 | 2 | 6 | 0 |
| $5$ | $1$ | $I_{1}$ | nonsplit multiplicative | 1 | 1 | 1 | 1 |
| $7$ | $1$ | $I_{1}$ | nonsplit multiplicative | 1 | 1 | 1 | 1 |
| $19$ | $10$ | $I_{10}$ | split multiplicative | -1 | 1 | 10 | 10 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $5$ | 5B.4.2 | 5.12.0.2 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 420 = 2^{2} \cdot 3 \cdot 5 \cdot 7 \), index $48$, genus $1$, and generators
$\left(\begin{array}{rr} 139 & 0 \\ 0 & 419 \end{array}\right),\left(\begin{array}{rr} 359 & 270 \\ 360 & 269 \end{array}\right),\left(\begin{array}{rr} 134 & 267 \\ 405 & 119 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 10 & 1 \end{array}\right),\left(\begin{array}{rr} 209 & 0 \\ 0 & 419 \end{array}\right),\left(\begin{array}{rr} 278 & 135 \\ 75 & 404 \end{array}\right),\left(\begin{array}{rr} 46 & 285 \\ 195 & 346 \end{array}\right),\left(\begin{array}{rr} 411 & 10 \\ 410 & 11 \end{array}\right),\left(\begin{array}{rr} 6 & 13 \\ 365 & 301 \end{array}\right),\left(\begin{array}{rr} 1 & 10 \\ 0 & 1 \end{array}\right)$.
The torsion field $K:=\Q(E[420])$ is a degree-$92897280$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/420\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | additive | $2$ | \( 315 = 3^{2} \cdot 5 \cdot 7 \) |
| $3$ | additive | $2$ | \( 10640 = 2^{4} \cdot 5 \cdot 7 \cdot 19 \) |
| $5$ | nonsplit multiplicative | $6$ | \( 1008 = 2^{4} \cdot 3^{2} \cdot 7 \) |
| $7$ | nonsplit multiplicative | $8$ | \( 13680 = 2^{4} \cdot 3^{2} \cdot 5 \cdot 19 \) |
| $19$ | split multiplicative | $20$ | \( 5040 = 2^{4} \cdot 3^{2} \cdot 5 \cdot 7 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
5.
Its isogeny class 95760di
consists of 2 curves linked by isogenies of
degree 5.
Twists
The minimal quadratic twist of this elliptic curve is 665d2, its twist by $12$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $3$ | 3.1.140.1 | \(\Z/2\Z\) | not in database |
| $4$ | 4.0.18000.1 | \(\Z/5\Z\) | not in database |
| $6$ | 6.0.686000.1 | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
| $8$ | deg 8 | \(\Z/3\Z\) | not in database |
| $10$ | 10.2.5472057199218750000000000.1 | \(\Z/5\Z\) | not in database |
| $12$ | deg 12 | \(\Z/4\Z\) | not in database |
| $12$ | deg 12 | \(\Z/10\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | add | add | nonsplit | nonsplit | ord | ord | ord | split | ord | ord | ord | ord | ord | ord | ord |
| $\lambda$-invariant(s) | - | - | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| $\mu$-invariant(s) | - | - | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.