Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2=x^3+1317x-8118\)
|
(homogenize, simplify) |
|
\(y^2z=x^3+1317xz^2-8118z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3+1317x-8118\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(31, 250)$ | $1.7226442559259605351762394512$ | $\infty$ |
| $(7, 38)$ | $2.9536648839035040576245203226$ | $\infty$ |
| $(6, 0)$ | $0$ | $2$ |
Integral points
\( \left(6, 0\right) \), \((7,\pm 38)\), \((31,\pm 250)\), \((63,\pm 570)\), \((106,\pm 1150)\), \((1431,\pm 54150)\)
Invariants
| Conductor: | $N$ | = | \( 95760 \) | = | $2^{4} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 19$ |
|
| Discriminant: | $\Delta$ | = | $-174666240000$ | = | $-1 \cdot 2^{12} \cdot 3^{3} \cdot 5^{4} \cdot 7 \cdot 19^{2} $ |
|
| j-invariant: | $j$ | = | \( \frac{2284322013}{1579375} \) | = | $3^{3} \cdot 5^{-4} \cdot 7^{-1} \cdot 19^{-2} \cdot 439^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $0.84575480840088073165409598205$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.12204544432609200061194744864$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $0.8996417771333546$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $2.891376957715611$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 2$ |
|
| Mordell-Weil rank: | $r$ | = | $ 2$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $4.5611140148456621841514059367$ |
|
| Real period: | $\Omega$ | ≈ | $0.57435494031006308015265428164$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 16 $ = $ 2\cdot2\cdot2\cdot1\cdot2 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
| Special value: | $ L^{(2)}(E,1)/2!$ | ≈ | $10.478793470976289893636140130 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 10.478793471 \approx L^{(2)}(E,1)/2! & \overset{?}{=} \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.574355 \cdot 4.561114 \cdot 16}{2^2} \\ & \approx 10.478793471\end{aligned}$$
Modular invariants
Modular form 95760.2.a.q
For more coefficients, see the Downloads section to the right.
| Modular degree: | 81920 |
|
| $ \Gamma_0(N) $-optimal: | no | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 5 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $2$ | $I_{4}^{*}$ | additive | -1 | 4 | 12 | 0 |
| $3$ | $2$ | $III$ | additive | 1 | 2 | 3 | 0 |
| $5$ | $2$ | $I_{4}$ | nonsplit multiplicative | 1 | 1 | 4 | 4 |
| $7$ | $1$ | $I_{1}$ | nonsplit multiplicative | 1 | 1 | 1 | 1 |
| $19$ | $2$ | $I_{2}$ | nonsplit multiplicative | 1 | 1 | 2 | 2 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $2$ | 2B | 2.3.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 1596 = 2^{2} \cdot 3 \cdot 7 \cdot 19 \), index $12$, genus $0$, and generators
$\left(\begin{array}{rr} 1 & 0 \\ 4 & 1 \end{array}\right),\left(\begin{array}{rr} 536 & 1 \\ 1063 & 0 \end{array}\right),\left(\begin{array}{rr} 3 & 4 \\ 8 & 11 \end{array}\right),\left(\begin{array}{rr} 1 & 2 \\ 2 & 5 \end{array}\right),\left(\begin{array}{rr} 400 & 1201 \\ 1197 & 400 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1593 & 4 \\ 1592 & 5 \end{array}\right),\left(\begin{array}{rr} 230 & 1 \\ 683 & 0 \end{array}\right),\left(\begin{array}{rr} 1009 & 4 \\ 422 & 9 \end{array}\right)$.
The torsion field $K:=\Q(E[1596])$ is a degree-$95312609280$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/1596\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | additive | $2$ | \( 21 = 3 \cdot 7 \) |
| $3$ | additive | $6$ | \( 10640 = 2^{4} \cdot 5 \cdot 7 \cdot 19 \) |
| $5$ | nonsplit multiplicative | $6$ | \( 19152 = 2^{4} \cdot 3^{2} \cdot 7 \cdot 19 \) |
| $7$ | nonsplit multiplicative | $8$ | \( 13680 = 2^{4} \cdot 3^{2} \cdot 5 \cdot 19 \) |
| $19$ | nonsplit multiplicative | $20$ | \( 5040 = 2^{4} \cdot 3^{2} \cdot 5 \cdot 7 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2.
Its isogeny class 95760bq
consists of 2 curves linked by isogenies of
degree 2.
Twists
The minimal quadratic twist of this elliptic curve is 5985b2, its twist by $-4$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $2$ | \(\Q(\sqrt{-21}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
| $4$ | 4.2.272916.4 | \(\Z/4\Z\) | not in database |
| $8$ | deg 8 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $8$ | 8.0.58394784155904.3 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $8$ | deg 8 | \(\Z/6\Z\) | not in database |
| $16$ | deg 16 | \(\Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | add | add | nonsplit | nonsplit | ss | ss | ord | nonsplit | ord | ord | ord | ord | ord | ord | ord |
| $\lambda$-invariant(s) | - | - | 6 | 2 | 2,2 | 4,2 | 2 | 4 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
| $\mu$-invariant(s) | - | - | 0 | 0 | 0,0 | 0,0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.