Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2=x^3+432597x+47512922\)
|
(homogenize, simplify) |
|
\(y^2z=x^3+432597xz^2+47512922z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3+432597x+47512922\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(-107, 0)$ | $0$ | $2$ |
Integral points
\( \left(-107, 0\right) \)
Invariants
| Conductor: | $N$ | = | \( 95760 \) | = | $2^{4} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 19$ |
|
| Discriminant: | $\Delta$ | = | $-6156431907996303360$ | = | $-1 \cdot 2^{30} \cdot 3^{3} \cdot 5 \cdot 7^{6} \cdot 19^{2} $ |
|
| j-invariant: | $j$ | = | \( \frac{80956273702840173}{55667967918080} \) | = | $2^{-18} \cdot 3^{3} \cdot 5^{-1} \cdot 7^{-6} \cdot 11^{3} \cdot 19^{-2} \cdot 13109^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.2939384043962245293745042524$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $1.3261381516692517971084608217$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $0.9931788077230937$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.406979066952804$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ |
|
| Mordell-Weil rank: | $r$ | = | $ 0$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ |
|
| Real period: | $\Omega$ | ≈ | $0.15063661562544237393667362973$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 32 $ = $ 2^{2}\cdot2\cdot1\cdot2\cdot2 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
| Special value: | $ L(E,1)$ | ≈ | $1.2050929250035389914933890379 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $1$ (exact) |
|
BSD formula
$$\begin{aligned} 1.205092925 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.150637 \cdot 1.000000 \cdot 32}{2^2} \\ & \approx 1.205092925\end{aligned}$$
Modular invariants
Modular form 95760.2.a.r
For more coefficients, see the Downloads section to the right.
| Modular degree: | 1492992 |
|
| $ \Gamma_0(N) $-optimal: | yes | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 5 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $4$ | $I_{22}^{*}$ | additive | -1 | 4 | 30 | 18 |
| $3$ | $2$ | $III$ | additive | 1 | 2 | 3 | 0 |
| $5$ | $1$ | $I_{1}$ | nonsplit multiplicative | 1 | 1 | 1 | 1 |
| $7$ | $2$ | $I_{6}$ | nonsplit multiplicative | 1 | 1 | 6 | 6 |
| $19$ | $2$ | $I_{2}$ | nonsplit multiplicative | 1 | 1 | 2 | 2 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $2$ | 2B | 2.3.0.1 |
| $3$ | 3B | 3.4.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 2280 = 2^{3} \cdot 3 \cdot 5 \cdot 19 \), index $96$, genus $1$, and generators
$\left(\begin{array}{rr} 11 & 2 \\ 2230 & 2271 \end{array}\right),\left(\begin{array}{rr} 10 & 3 \\ 1341 & 2272 \end{array}\right),\left(\begin{array}{rr} 1141 & 12 \\ 6 & 73 \end{array}\right),\left(\begin{array}{rr} 2269 & 12 \\ 2268 & 13 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 12 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 6 \\ 6 & 37 \end{array}\right),\left(\begin{array}{rr} 392 & 11 \\ 1485 & 2248 \end{array}\right),\left(\begin{array}{rr} 1 & 12 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1921 & 12 \\ 126 & 73 \end{array}\right),\left(\begin{array}{rr} 1605 & 1232 \\ 1642 & 1243 \end{array}\right)$.
The torsion field $K:=\Q(E[2280])$ is a degree-$45386956800$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/2280\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | additive | $2$ | \( 15 = 3 \cdot 5 \) |
| $3$ | additive | $6$ | \( 1520 = 2^{4} \cdot 5 \cdot 19 \) |
| $5$ | nonsplit multiplicative | $6$ | \( 19152 = 2^{4} \cdot 3^{2} \cdot 7 \cdot 19 \) |
| $7$ | nonsplit multiplicative | $8$ | \( 13680 = 2^{4} \cdot 3^{2} \cdot 5 \cdot 19 \) |
| $19$ | nonsplit multiplicative | $20$ | \( 5040 = 2^{4} \cdot 3^{2} \cdot 5 \cdot 7 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2, 3 and 6.
Its isogeny class 95760.r
consists of 4 curves linked by isogenies of
degrees dividing 6.
Twists
The minimal quadratic twist of this elliptic curve is 11970.y4, its twist by $12$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $2$ | \(\Q(\sqrt{-15}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
| $2$ | \(\Q(\sqrt{-1}) \) | \(\Z/6\Z\) | not in database |
| $4$ | 4.2.12476160.1 | \(\Z/4\Z\) | not in database |
| $4$ | \(\Q(i, \sqrt{15})\) | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
| $6$ | 6.2.11400481080000.10 | \(\Z/6\Z\) | not in database |
| $8$ | 8.0.3891364208640000.57 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $8$ | deg 8 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $8$ | 8.0.155654568345600.49 | \(\Z/12\Z\) | not in database |
| $12$ | deg 12 | \(\Z/3\Z \oplus \Z/6\Z\) | not in database |
| $12$ | deg 12 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
| $16$ | deg 16 | \(\Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
| $18$ | 18.0.4956132243165501268865802925729014681600000000.3 | \(\Z/18\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 19 |
|---|---|---|---|---|---|
| Reduction type | add | add | nonsplit | nonsplit | nonsplit |
| $\lambda$-invariant(s) | - | - | 0 | 0 | 0 |
| $\mu$-invariant(s) | - | - | 0 | 0 | 0 |
All Iwasawa $\lambda$ and $\mu$-invariants for primes $p\ge 5$ of good reduction are zero.
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.