Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2+xy=x^3-929188x+154724492\)
|
(homogenize, simplify) |
\(y^2z+xyz=x^3-929188xz^2+154724492z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-1204227675x+7222438581750\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(-724, 21530)$ | $3.2855600301773070633828017766$ | $\infty$ |
$(172, -86)$ | $0$ | $2$ |
Integral points
\( \left(-724, 21530\right) \), \( \left(-724, -20806\right) \), \( \left(172, -86\right) \)
Invariants
Conductor: | $N$ | = | \( 95550 \) | = | $2 \cdot 3 \cdot 5^{2} \cdot 7^{2} \cdot 13$ |
|
Discriminant: | $\Delta$ | = | $40991837126211562500$ | = | $2^{2} \cdot 3^{6} \cdot 5^{7} \cdot 7^{12} \cdot 13 $ |
|
j-invariant: | $j$ | = | \( \frac{48264326765929}{22299191460} \) | = | $2^{-2} \cdot 3^{-6} \cdot 5^{-1} \cdot 7^{-6} \cdot 13^{-1} \cdot 23^{3} \cdot 1583^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.4579973263249112650942269063$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.68032329558020442524117086796$ |
|
||
$abc$ quality: | $Q$ | ≈ | $0.9442546674514717$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.607825609044602$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
Mordell-Weil rank: | $r$ | = | $ 1$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $3.2855600301773070633828017766$ |
|
Real period: | $\Omega$ | ≈ | $0.18238109080151018601251597361$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 96 $ = $ 2\cdot( 2 \cdot 3 )\cdot2\cdot2^{2}\cdot1 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
Special value: | $ L'(E,1)$ | ≈ | $14.381376532741919674251730926 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 14.381376533 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.182381 \cdot 3.285560 \cdot 96}{2^2} \\ & \approx 14.381376533\end{aligned}$$
Modular invariants
Modular form 95550.2.a.li
For more coefficients, see the Downloads section to the right.
Modular degree: | 3981312 |
|
$ \Gamma_0(N) $-optimal: | yes | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 5 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $2$ | $I_{2}$ | split multiplicative | -1 | 1 | 2 | 2 |
$3$ | $6$ | $I_{6}$ | split multiplicative | -1 | 1 | 6 | 6 |
$5$ | $2$ | $I_{1}^{*}$ | additive | 1 | 2 | 7 | 1 |
$7$ | $4$ | $I_{6}^{*}$ | additive | -1 | 2 | 12 | 6 |
$13$ | $1$ | $I_{1}$ | split multiplicative | -1 | 1 | 1 | 1 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 2.3.0.1 |
$3$ | 3B | 3.4.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 10920 = 2^{3} \cdot 3 \cdot 5 \cdot 7 \cdot 13 \), index $96$, genus $1$, and generators
$\left(\begin{array}{rr} 1 & 6 \\ 6 & 37 \end{array}\right),\left(\begin{array}{rr} 1 & 12 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 9250 & 3 \\ 6693 & 10912 \end{array}\right),\left(\begin{array}{rr} 3195 & 5008 \\ 3158 & 4997 \end{array}\right),\left(\begin{array}{rr} 3119 & 10908 \\ 7794 & 10847 \end{array}\right),\left(\begin{array}{rr} 5461 & 12 \\ 6 & 73 \end{array}\right),\left(\begin{array}{rr} 7289 & 2 \\ 1878 & 13 \end{array}\right),\left(\begin{array}{rr} 10909 & 12 \\ 10908 & 13 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 12 & 1 \end{array}\right),\left(\begin{array}{rr} 11 & 2 \\ 10870 & 10911 \end{array}\right),\left(\begin{array}{rr} 10910 & 10917 \\ 6579 & 8 \end{array}\right)$.
The torsion field $K:=\Q(E[10920])$ is a degree-$19477215313920$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/10920\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | split multiplicative | $4$ | \( 15925 = 5^{2} \cdot 7^{2} \cdot 13 \) |
$3$ | split multiplicative | $4$ | \( 31850 = 2 \cdot 5^{2} \cdot 7^{2} \cdot 13 \) |
$5$ | additive | $18$ | \( 3822 = 2 \cdot 3 \cdot 7^{2} \cdot 13 \) |
$7$ | additive | $32$ | \( 1950 = 2 \cdot 3 \cdot 5^{2} \cdot 13 \) |
$13$ | split multiplicative | $14$ | \( 7350 = 2 \cdot 3 \cdot 5^{2} \cdot 7^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2, 3 and 6.
Its isogeny class 95550ke
consists of 4 curves linked by isogenies of
degrees dividing 6.
Twists
The minimal quadratic twist of this elliptic curve is 2730o1, its twist by $-35$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{65}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$2$ | \(\Q(\sqrt{-35}) \) | \(\Z/6\Z\) | not in database |
$4$ | 4.0.203840.4 | \(\Z/4\Z\) | not in database |
$4$ | \(\Q(\sqrt{-35}, \sqrt{65})\) | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$6$ | 6.2.13225171050000.5 | \(\Z/6\Z\) | not in database |
$8$ | deg 8 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | 8.0.175551900160000.3 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | 8.0.1038768640000.38 | \(\Z/12\Z\) | not in database |
$12$ | deg 12 | \(\Z/3\Z \oplus \Z/6\Z\) | not in database |
$12$ | deg 12 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$16$ | deg 16 | \(\Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
$18$ | 18.0.249175352857609178556077693099721889687500000000.3 | \(\Z/18\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | split | split | add | add | ord | split | ss | ord | ss | ord | ord | ord | ss | ord | ord |
$\lambda$-invariant(s) | 8 | 6 | - | - | 1 | 2 | 1,1 | 1 | 1,1 | 1 | 1 | 1 | 1,1 | 1 | 1 |
$\mu$-invariant(s) | 0 | 0 | - | - | 0 | 0 | 0,0 | 0 | 0,0 | 0 | 0 | 0 | 0,0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
Note: $p$-adic regulator data only exists for primes $p\ge 5$ of good ordinary reduction.