Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2+xy+y=x^3+x^2-2612338x-1639071169\)
|
(homogenize, simplify) |
|
\(y^2z+xyz+yz^2=x^3+x^2z-2612338xz^2-1639071169z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-3385590075x-76421720601450\)
|
(homogenize, minimize) |
Mordell-Weil group structure
trivial
Invariants
| Conductor: | $N$ | = | \( 95550 \) | = | $2 \cdot 3 \cdot 5^{2} \cdot 7^{2} \cdot 13$ |
|
| Discriminant: | $\Delta$ | = | $-18096641239065480000$ | = | $-1 \cdot 2^{6} \cdot 3^{6} \cdot 5^{4} \cdot 7^{10} \cdot 13^{3} $ |
|
| j-invariant: | $j$ | = | \( -\frac{11167382937025}{102503232} \) | = | $-1 \cdot 2^{-6} \cdot 3^{-6} \cdot 5^{2} \cdot 7^{2} \cdot 13^{-3} \cdot 2089^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.5176129362025387887165666716$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.35954184117841090959518627432$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $0.9827825235301019$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.879622573545892$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ |
|
| Mordell-Weil rank: | $r$ | = | $ 0$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ |
|
| Real period: | $\Omega$ | ≈ | $0.059343671997456879525865729044$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 12 $ = $ ( 2 \cdot 3 )\cdot2\cdot1\cdot1\cdot1 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $1$ |
|
| Special value: | $ L(E,1)$ | ≈ | $0.71212406396948255431038874853 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $1$ (exact) |
|
BSD formula
$$\begin{aligned} 0.712124064 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.059344 \cdot 1.000000 \cdot 12}{1^2} \\ & \approx 0.712124064\end{aligned}$$
Modular invariants
Modular form 95550.2.a.gq
For more coefficients, see the Downloads section to the right.
| Modular degree: | 3701376 |
|
| $ \Gamma_0(N) $-optimal: | yes | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 5 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $6$ | $I_{6}$ | split multiplicative | -1 | 1 | 6 | 6 |
| $3$ | $2$ | $I_{6}$ | nonsplit multiplicative | 1 | 1 | 6 | 6 |
| $5$ | $1$ | $IV$ | additive | -1 | 2 | 4 | 0 |
| $7$ | $1$ | $II^{*}$ | additive | -1 | 2 | 10 | 0 |
| $13$ | $1$ | $I_{3}$ | nonsplit multiplicative | 1 | 1 | 3 | 3 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $3$ | 3B | 3.4.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 1092 = 2^{2} \cdot 3 \cdot 7 \cdot 13 \), index $16$, genus $0$, and generators
$\left(\begin{array}{rr} 4 & 3 \\ 9 & 7 \end{array}\right),\left(\begin{array}{rr} 547 & 630 \\ 861 & 799 \end{array}\right),\left(\begin{array}{rr} 925 & 630 \\ 903 & 799 \end{array}\right),\left(\begin{array}{rr} 1002 & 721 \\ 637 & 183 \end{array}\right),\left(\begin{array}{rr} 1087 & 6 \\ 1086 & 7 \end{array}\right),\left(\begin{array}{rr} 1 & 6 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 3 & 4 \\ 8 & 11 \end{array}\right),\left(\begin{array}{rr} 935 & 0 \\ 0 & 1091 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 6 & 1 \end{array}\right)$.
The torsion field $K:=\Q(E[1092])$ is a degree-$15216574464$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/1092\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | split multiplicative | $4$ | \( 15925 = 5^{2} \cdot 7^{2} \cdot 13 \) |
| $3$ | nonsplit multiplicative | $4$ | \( 1225 = 5^{2} \cdot 7^{2} \) |
| $5$ | additive | $14$ | \( 3822 = 2 \cdot 3 \cdot 7^{2} \cdot 13 \) |
| $7$ | additive | $20$ | \( 1950 = 2 \cdot 3 \cdot 5^{2} \cdot 13 \) |
| $13$ | nonsplit multiplicative | $14$ | \( 7350 = 2 \cdot 3 \cdot 5^{2} \cdot 7^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
3.
Its isogeny class 95550hx
consists of 2 curves linked by isogenies of
degree 3.
Twists
The minimal quadratic twist of this elliptic curve is 95550kl1, its twist by $-7$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $2$ | \(\Q(\sqrt{-7}) \) | \(\Z/3\Z\) | not in database |
| $3$ | 3.1.63700.2 | \(\Z/2\Z\) | not in database |
| $6$ | 6.0.210999880000.2 | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
| $6$ | 6.2.283618125.1 | \(\Z/3\Z\) | not in database |
| $6$ | 6.0.28403830000.1 | \(\Z/6\Z\) | not in database |
| $12$ | deg 12 | \(\Z/4\Z\) | not in database |
| $12$ | deg 12 | \(\Z/3\Z \oplus \Z/3\Z\) | not in database |
| $12$ | deg 12 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
| $18$ | 18.0.977480813971145474830595007000000000000.2 | \(\Z/9\Z\) | not in database |
| $18$ | 18.2.451047215963043109321821000000000000.2 | \(\Z/6\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | split | nonsplit | add | add | ord | nonsplit | ord | ord | ord | ord | ord | ord | ord | ord | ss |
| $\lambda$-invariant(s) | 2 | 2 | - | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0,0 |
| $\mu$-invariant(s) | 0 | 0 | - | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0,0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.