Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2+xy=x^3+x^2-394825x-95654075\)
|
(homogenize, simplify) |
\(y^2z+xyz=x^3+x^2z-394825xz^2-95654075z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-511693875x-4455161118450\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(-9081/25, 22943/125)$ | $4.4728651857720077288817087250$ | $\infty$ |
Integral points
None
Invariants
Conductor: | $N$ | = | \( 95550 \) | = | $2 \cdot 3 \cdot 5^{2} \cdot 7^{2} \cdot 13$ |
|
Discriminant: | $\Delta$ | = | $482947920000$ | = | $2^{7} \cdot 3^{6} \cdot 5^{4} \cdot 7^{2} \cdot 13^{2} $ |
|
j-invariant: | $j$ | = | \( \frac{222261000810165625}{15769728} \) | = | $2^{-7} \cdot 3^{-6} \cdot 5^{5} \cdot 7 \cdot 11^{6} \cdot 13^{-2} \cdot 179^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $1.6947057867873383294158310929$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.83390812446675265369801919125$ |
|
||
$abc$ quality: | $Q$ | ≈ | $1.1261388913480288$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.38392129117573$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
Mordell-Weil rank: | $r$ | = | $ 1$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $4.4728651857720077288817087250$ |
|
Real period: | $\Omega$ | ≈ | $0.19045757583937304841032063549$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 4 $ = $ 1\cdot2\cdot1\cdot1\cdot2 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $1$ |
|
Special value: | $ L'(E,1)$ | ≈ | $3.4075642413538543241356518062 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 3.407564241 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.190458 \cdot 4.472865 \cdot 4}{1^2} \\ & \approx 3.407564241\end{aligned}$$
Modular invariants
Modular form 95550.2.a.br
For more coefficients, see the Downloads section to the right.
Modular degree: | 508032 |
|
$ \Gamma_0(N) $-optimal: | yes | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 5 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $1$ | $I_{7}$ | nonsplit multiplicative | 1 | 1 | 7 | 7 |
$3$ | $2$ | $I_{6}$ | nonsplit multiplicative | 1 | 1 | 6 | 6 |
$5$ | $1$ | $IV$ | additive | -1 | 2 | 4 | 0 |
$7$ | $1$ | $II$ | additive | -1 | 2 | 2 | 0 |
$13$ | $2$ | $I_{2}$ | nonsplit multiplicative | 1 | 1 | 2 | 2 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2G | 8.2.0.2 |
$3$ | 3B | 3.4.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 168 = 2^{3} \cdot 3 \cdot 7 \), index $16$, genus $0$, and generators
$\left(\begin{array}{rr} 4 & 3 \\ 9 & 7 \end{array}\right),\left(\begin{array}{rr} 163 & 6 \\ 162 & 7 \end{array}\right),\left(\begin{array}{rr} 1 & 6 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 6 & 1 \end{array}\right),\left(\begin{array}{rr} 127 & 6 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 78 & 97 \\ 49 & 99 \end{array}\right),\left(\begin{array}{rr} 51 & 2 \\ 58 & 7 \end{array}\right),\left(\begin{array}{rr} 3 & 4 \\ 8 & 11 \end{array}\right),\left(\begin{array}{rr} 85 & 6 \\ 87 & 19 \end{array}\right)$.
The torsion field $K:=\Q(E[168])$ is a degree-$9289728$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/168\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | nonsplit multiplicative | $4$ | \( 1225 = 5^{2} \cdot 7^{2} \) |
$3$ | nonsplit multiplicative | $4$ | \( 31850 = 2 \cdot 5^{2} \cdot 7^{2} \cdot 13 \) |
$5$ | additive | $14$ | \( 3822 = 2 \cdot 3 \cdot 7^{2} \cdot 13 \) |
$7$ | additive | $14$ | \( 975 = 3 \cdot 5^{2} \cdot 13 \) |
$13$ | nonsplit multiplicative | $14$ | \( 7350 = 2 \cdot 3 \cdot 5^{2} \cdot 7^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
3.
Its isogeny class 95550ci
consists of 2 curves linked by isogenies of
degree 3.
Twists
This elliptic curve is its own minimal quadratic twist.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{-7}) \) | \(\Z/3\Z\) | not in database |
$3$ | 3.3.9800.1 | \(\Z/2\Z\) | not in database |
$6$ | 6.6.768320000.1 | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$6$ | 6.2.129606676290000.1 | \(\Z/3\Z\) | not in database |
$6$ | 6.0.672280000.1 | \(\Z/6\Z\) | not in database |
$12$ | deg 12 | \(\Z/4\Z\) | not in database |
$12$ | deg 12 | \(\Z/3\Z \oplus \Z/3\Z\) | not in database |
$12$ | deg 12 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$18$ | 18.0.49835070571521835711215538619944377937500000000.2 | \(\Z/9\Z\) | not in database |
$18$ | 18.6.35669913787356940656026410994712576000000000000.1 | \(\Z/6\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | nonsplit | nonsplit | add | add | ss | nonsplit | ord | ord | ord | ord | ord | ord | ord | ord | ord |
$\lambda$-invariant(s) | 6 | 1 | - | - | 1,1 | 3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
$\mu$-invariant(s) | 0 | 0 | - | - | 0,0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
Note: $p$-adic regulator data only exists for primes $p\ge 5$ of good ordinary reduction.