Properties

Label 95550.gj
Number of curves $4$
Conductor $95550$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("gj1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 95550.gj have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 - T\)
\(3\)\(1 + T\)
\(5\)\(1\)
\(7\)\(1\)
\(13\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(11\) \( 1 + 4 T + 11 T^{2}\) 1.11.e
\(17\) \( 1 - 2 T + 17 T^{2}\) 1.17.ac
\(19\) \( 1 - 8 T + 19 T^{2}\) 1.19.ai
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 - 6 T + 29 T^{2}\) 1.29.ag
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 95550.gj do not have complex multiplication.

Modular form 95550.2.a.gj

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} - q^{3} + q^{4} - q^{6} + q^{8} + q^{9} - 4 q^{11} - q^{12} + q^{13} + q^{16} + 2 q^{17} + q^{18} + 8 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 95550.gj

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
95550.gj1 95550hl4 \([1, 1, 1, -25405913, -49299616969]\) \(986551739719628473/111045168\) \(204130515156750000\) \([2]\) \(5898240\) \(2.7458\)  
95550.gj2 95550hl3 \([1, 1, 1, -2865913, 632167031]\) \(1416134368422073/725251155408\) \(1333204268478059250000\) \([2]\) \(5898240\) \(2.7458\)  
95550.gj3 95550hl2 \([1, 1, 1, -1591913, -766684969]\) \(242702053576633/2554695936\) \(4696209721476000000\) \([2, 2]\) \(2949120\) \(2.3992\)  
95550.gj4 95550hl1 \([1, 1, 1, -23913, -29724969]\) \(-822656953/207028224\) \(-380572867584000000\) \([2]\) \(1474560\) \(2.0526\) \(\Gamma_0(N)\)-optimal