Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
| \(y^2+xy=x^3+x^2-44749275x+34858108125\) | (homogenize, simplify) | 
| \(y^2z+xyz=x^3+x^2z-44749275xz^2+34858108125z^3\) | (dehomogenize, simplify) | 
| \(y^2=x^3-57995061075x+1627209818592750\) | (homogenize, minimize) | 
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order | 
|---|---|---|
| $(-1954, 339861)$ | $3.0957519349506886502711873119$ | $\infty$ | 
| $(-7050, 3525)$ | $0$ | $2$ | 
| $(790, -395)$ | $0$ | $2$ | 
Integral points
      
    \( \left(-7050, 3525\right) \), \( \left(-1954, 339861\right) \), \( \left(-1954, -337907\right) \), \( \left(790, -395\right) \), \( \left(13425, 1354875\right) \), \( \left(13425, -1368300\right) \), \( \left(16415, 1921480\right) \), \( \left(16415, -1937895\right) \)
    
    
    
        
    
    
        
    
      
Invariants
| Conductor: | $N$ | = | \( 95550 \) | = | $2 \cdot 3 \cdot 5^{2} \cdot 7^{2} \cdot 13$ |  | 
| Discriminant: | $\Delta$ | = | $5209580855562890625000000$ | = | $2^{6} \cdot 3^{4} \cdot 5^{14} \cdot 7^{8} \cdot 13^{4} $ |  | 
| j-invariant: | $j$ | = | \( \frac{5391051390768345121}{2833965225000000} \) | = | $2^{-6} \cdot 3^{-4} \cdot 5^{-8} \cdot 7^{-2} \cdot 13^{-4} \cdot 1753441^{3}$ |  | 
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |  | ||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $3.4343711676976570815518302968$ |  | ||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $1.6566971369529502416987742585$ |  | ||
| $abc$ quality: | $Q$ | ≈ | $1.0110527940526417$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $5.6214427549115324$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |  | 
| Mordell-Weil rank: | $r$ | = | $ 1$ |  | 
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $3.0957519349506886502711873119$ |  | 
| Real period: | $\Omega$ | ≈ | $0.067194446881805467509263892427$ |  | 
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 256 $ = $ 2\cdot2\cdot2^{2}\cdot2^{2}\cdot2^{2} $ |  | 
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $4$ |  | 
| Special value: | $ L'(E,1)$ | ≈ | $3.3282774232366486954457678207 $ |  | 
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |  | 
BSD formula
$$\begin{aligned} 3.328277423 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.067194 \cdot 3.095752 \cdot 256}{4^2} \\ & \approx 3.328277423\end{aligned}$$
Modular invariants
Modular form 95550.2.a.m
For more coefficients, see the Downloads section to the right.
| Modular degree: | 28311552 |  | 
| $ \Gamma_0(N) $-optimal: | no | |
| Manin constant: | 1 |  | 
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 5 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ | 
|---|---|---|---|---|---|---|---|
| $2$ | $2$ | $I_{6}$ | nonsplit multiplicative | 1 | 1 | 6 | 6 | 
| $3$ | $2$ | $I_{4}$ | nonsplit multiplicative | 1 | 1 | 4 | 4 | 
| $5$ | $4$ | $I_{8}^{*}$ | additive | 1 | 2 | 14 | 8 | 
| $7$ | $4$ | $I_{2}^{*}$ | additive | -1 | 2 | 8 | 2 | 
| $13$ | $4$ | $I_{4}$ | split multiplicative | -1 | 1 | 4 | 4 | 
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image | 
|---|---|---|
| $2$ | 2Cs | 8.24.0.10 | 
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 10920 = 2^{3} \cdot 3 \cdot 5 \cdot 7 \cdot 13 \), index $192$, genus $1$, and generators
$\left(\begin{array}{rr} 1 & 8 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 8 & 1 \end{array}\right),\left(\begin{array}{rr} 5 & 4 \\ 10916 & 10917 \end{array}\right),\left(\begin{array}{rr} 2183 & 0 \\ 0 & 10919 \end{array}\right),\left(\begin{array}{rr} 2191 & 4920 \\ 4390 & 3841 \end{array}\right),\left(\begin{array}{rr} 4201 & 6560 \\ 3700 & 4401 \end{array}\right),\left(\begin{array}{rr} 3641 & 6560 \\ 1460 & 4401 \end{array}\right),\left(\begin{array}{rr} 10913 & 8 \\ 10912 & 9 \end{array}\right),\left(\begin{array}{rr} 8729 & 8730 \\ 5310 & 2189 \end{array}\right),\left(\begin{array}{rr} 4371 & 6010 \\ 10370 & 8731 \end{array}\right)$.
The torsion field $K:=\Q(E[10920])$ is a degree-$9738607656960$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/10920\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor | 
|---|---|---|---|
| $2$ | nonsplit multiplicative | $4$ | \( 1225 = 5^{2} \cdot 7^{2} \) | 
| $3$ | nonsplit multiplicative | $4$ | \( 15925 = 5^{2} \cdot 7^{2} \cdot 13 \) | 
| $5$ | additive | $18$ | \( 3822 = 2 \cdot 3 \cdot 7^{2} \cdot 13 \) | 
| $7$ | additive | $32$ | \( 1950 = 2 \cdot 3 \cdot 5^{2} \cdot 13 \) | 
| $13$ | split multiplicative | $14$ | \( 7350 = 2 \cdot 3 \cdot 5^{2} \cdot 7^{2} \) | 
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2 and 4.
Its isogeny class 95550.m
consists of 6 curves linked by isogenies of
degrees dividing 8.
Twists
The minimal quadratic twist of this elliptic curve is 2730.x3, its twist by $-35$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z \oplus \Z/{2}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve | 
|---|---|---|---|
| $2$ | \(\Q(\sqrt{35}) \) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database | 
| $4$ | \(\Q(\sqrt{-10}, \sqrt{14})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database | 
| $4$ | \(\Q(\sqrt{10}, \sqrt{-14})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database | 
| $4$ | \(\Q(\sqrt{35}, \sqrt{39})\) | \(\Z/2\Z \oplus \Z/8\Z\) | not in database | 
| $8$ | 8.0.98344960000.2 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database | 
| $8$ | deg 8 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database | 
| $8$ | deg 8 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database | 
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database | 
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database | 
| $16$ | deg 16 | \(\Z/4\Z \oplus \Z/8\Z\) | not in database | 
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/16\Z\) | not in database | 
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database | 
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | nonsplit | nonsplit | add | add | ord | split | ord | ord | ord | ord | ss | ord | ord | ord | ord | 
| $\lambda$-invariant(s) | 6 | 1 | - | - | 1 | 4 | 1 | 1 | 1 | 1 | 1,1 | 1 | 1 | 1 | 1 | 
| $\mu$-invariant(s) | 0 | 0 | - | - | 0 | 0 | 0 | 0 | 0 | 0 | 0,0 | 0 | 0 | 0 | 0 | 
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.
