Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2+xy+y=x^3-36683876x+85515610898\)
|
(homogenize, simplify) |
\(y^2z+xyz+yz^2=x^3-36683876xz^2+85515610898z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-47542302675x+3989958968976750\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(3492, -1259)$ | $0.61273617776553332038771686803$ | $\infty$ |
$(3497, -1749)$ | $0$ | $2$ |
Integral points
\( \left(2517, 94291\right) \), \( \left(2517, -96809\right) \), \( \left(3492, -1259\right) \), \( \left(3492, -2234\right) \), \( \left(3497, -1749\right) \), \( \left(3522, 826\right) \), \( \left(3522, -4349\right) \), \( \left(3693, 18439\right) \), \( \left(3693, -22133\right) \)
Invariants
Conductor: | $N$ | = | \( 95550 \) | = | $2 \cdot 3 \cdot 5^{2} \cdot 7^{2} \cdot 13$ |
|
Discriminant: | $\Delta$ | = | $42275550476250000$ | = | $2^{4} \cdot 3^{5} \cdot 5^{7} \cdot 7^{7} \cdot 13^{2} $ |
|
j-invariant: | $j$ | = | \( \frac{2969894891179808929}{22997520} \) | = | $2^{-4} \cdot 3^{-5} \cdot 5^{-1} \cdot 7^{-1} \cdot 13^{-2} \cdot 1437409^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.7823369532357609369755180049$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $1.0046629224910540971224619666$ |
|
||
$abc$ quality: | $Q$ | ≈ | $0.9810212262699565$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $5.569450707039803$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
Mordell-Weil rank: | $r$ | = | $ 1$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $0.61273617776553332038771686803$ |
|
Real period: | $\Omega$ | ≈ | $0.24978828604738027740427391410$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 160 $ = $ 2\cdot5\cdot2^{2}\cdot2\cdot2 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
Special value: | $ L'(E,1)$ | ≈ | $6.1221727857310195221480845835 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 6.122172786 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.249788 \cdot 0.612736 \cdot 160}{2^2} \\ & \approx 6.122172786\end{aligned}$$
Modular invariants
Modular form 95550.2.a.ep
For more coefficients, see the Downloads section to the right.
Modular degree: | 5898240 |
|
$ \Gamma_0(N) $-optimal: | yes | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 5 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $2$ | $I_{4}$ | nonsplit multiplicative | 1 | 1 | 4 | 4 |
$3$ | $5$ | $I_{5}$ | split multiplicative | -1 | 1 | 5 | 5 |
$5$ | $4$ | $I_{1}^{*}$ | additive | 1 | 2 | 7 | 1 |
$7$ | $2$ | $I_{1}^{*}$ | additive | -1 | 2 | 7 | 1 |
$13$ | $2$ | $I_{2}$ | nonsplit multiplicative | 1 | 1 | 2 | 2 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 4.6.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 840 = 2^{3} \cdot 3 \cdot 5 \cdot 7 \), index $48$, genus $0$, and generators
$\left(\begin{array}{rr} 716 & 839 \\ 337 & 834 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 8 & 1 \end{array}\right),\left(\begin{array}{rr} 833 & 8 \\ 832 & 9 \end{array}\right),\left(\begin{array}{rr} 568 & 3 \\ 565 & 2 \end{array}\right),\left(\begin{array}{rr} 1 & 8 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 4 & 17 \end{array}\right),\left(\begin{array}{rr} 664 & 837 \\ 835 & 838 \end{array}\right),\left(\begin{array}{rr} 529 & 528 \\ 118 & 535 \end{array}\right),\left(\begin{array}{rr} 323 & 318 \\ 530 & 107 \end{array}\right),\left(\begin{array}{rr} 7 & 6 \\ 834 & 835 \end{array}\right)$.
The torsion field $K:=\Q(E[840])$ is a degree-$1486356480$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/840\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | nonsplit multiplicative | $4$ | \( 3675 = 3 \cdot 5^{2} \cdot 7^{2} \) |
$3$ | split multiplicative | $4$ | \( 31850 = 2 \cdot 5^{2} \cdot 7^{2} \cdot 13 \) |
$5$ | additive | $18$ | \( 1274 = 2 \cdot 7^{2} \cdot 13 \) |
$7$ | additive | $32$ | \( 1950 = 2 \cdot 3 \cdot 5^{2} \cdot 13 \) |
$13$ | nonsplit multiplicative | $14$ | \( 7350 = 2 \cdot 3 \cdot 5^{2} \cdot 7^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2 and 4.
Its isogeny class 95550.ep
consists of 4 curves linked by isogenies of
degrees dividing 4.
Twists
The minimal quadratic twist of this elliptic curve is 2730.z3, its twist by $-35$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{105}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$2$ | \(\Q(\sqrt{21}) \) | \(\Z/4\Z\) | not in database |
$2$ | \(\Q(\sqrt{5}) \) | \(\Z/4\Z\) | not in database |
$4$ | \(\Q(\sqrt{5}, \sqrt{21})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | deg 8 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | 8.8.112021056000000.6 | \(\Z/8\Z\) | not in database |
$8$ | deg 8 | \(\Z/8\Z\) | not in database |
$8$ | deg 8 | \(\Z/6\Z\) | not in database |
$16$ | deg 16 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$16$ | deg 16 | \(\Z/12\Z\) | not in database |
$16$ | deg 16 | \(\Z/12\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | nonsplit | split | add | add | ss | nonsplit | ord | ord | ord | ord | ord | ord | ord | ss | ord |
$\lambda$-invariant(s) | 4 | 4 | - | - | 3,1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1,1 | 1 |
$\mu$-invariant(s) | 0 | 0 | - | - | 0,0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0,0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
Note: $p$-adic regulator data only exists for primes $p\ge 5$ of good ordinary reduction.