Show commands: SageMath
Rank
The elliptic curves in class 9555.d have rank \(1\).
L-function data
Bad L-factors: |
| ||||||||||||||||||||||||
Good L-factors: |
| ||||||||||||||||||||||||
See L-function page for more information |
Complex multiplication
The elliptic curves in class 9555.d do not have complex multiplication.Modular form 9555.2.a.d
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rrrrrr} 1 & 8 & 2 & 4 & 8 & 4 \\ 8 & 1 & 4 & 2 & 4 & 8 \\ 2 & 4 & 1 & 2 & 4 & 2 \\ 4 & 2 & 2 & 1 & 2 & 4 \\ 8 & 4 & 4 & 2 & 1 & 8 \\ 4 & 8 & 2 & 4 & 8 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with LMFDB labels.
Elliptic curves in class 9555.d
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
9555.d1 | 9555q5 | \([1, 0, 0, -6697076, 6669786885]\) | \(282352188585428161201/20813369346315\) | \(2448672090224613435\) | \([2]\) | \(294912\) | \(2.5788\) | |
9555.d2 | 9555q3 | \([1, 0, 0, -2295651, -1338959070]\) | \(11372424889583066401/50586128775\) | \(5951407464249975\) | \([2]\) | \(147456\) | \(2.2322\) | |
9555.d3 | 9555q4 | \([1, 0, 0, -445901, 89800080]\) | \(83339496416030401/18593645841225\) | \(2187523839574280025\) | \([2, 2]\) | \(147456\) | \(2.2322\) | |
9555.d4 | 9555q2 | \([1, 0, 0, -145776, -20225745]\) | \(2912015927948401/184878500625\) | \(21750770720030625\) | \([2, 2]\) | \(73728\) | \(1.8857\) | |
9555.d5 | 9555q1 | \([1, 0, 0, 7349, -1330120]\) | \(373092501599/6718359375\) | \(-790408262109375\) | \([2]\) | \(36864\) | \(1.5391\) | \(\Gamma_0(N)\)-optimal |
9555.d6 | 9555q6 | \([1, 0, 0, 1003274, 552666575]\) | \(949279533867428399/1670570708285115\) | \(-196540973259035494635\) | \([2]\) | \(294912\) | \(2.5788\) |