Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2+xy=x^3+x^2-317475x-47710717\)
|
(homogenize, simplify) |
|
\(y^2z+xyz=x^3+x^2z-317475xz^2-47710717z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-411448275x-2219819491602\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(14943055678498693/3907212428889, 1791478472546704711131599/7723257870174732963)$ | $33.349854329451767428669048513$ | $\infty$ |
| $(2507/4, -2507/8)$ | $0$ | $2$ |
Integral points
None
Invariants
| Conductor: | $N$ | = | \( 95506 \) | = | $2 \cdot 17 \cdot 53^{2}$ |
|
| Discriminant: | $\Delta$ | = | $1069987592184310802$ | = | $2 \cdot 17^{6} \cdot 53^{6} $ |
|
| j-invariant: | $j$ | = | \( \frac{159661140625}{48275138} \) | = | $2^{-1} \cdot 5^{6} \cdot 7^{3} \cdot 17^{-6} \cdot 31^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.1646333548416264308264850708$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.17948739806556551375425050128$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $1.0684849196783666$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.327052569073855$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
| Mordell-Weil rank: | $r$ | = | $ 1$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $33.349854329451767428669048513$ |
|
| Real period: | $\Omega$ | ≈ | $0.20584228327529649596004995965$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 4 $ = $ 1\cdot2\cdot2 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
| Special value: | $ L'(E,1)$ | ≈ | $6.8648101620728839835784497454 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 6.864810162 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.205842 \cdot 33.349854 \cdot 4}{2^2} \\ & \approx 6.864810162\end{aligned}$$
Modular invariants
Modular form 95506.2.a.e
For more coefficients, see the Downloads section to the right.
| Modular degree: | 1797120 |
|
| $ \Gamma_0(N) $-optimal: | no | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 3 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $1$ | $I_{1}$ | nonsplit multiplicative | 1 | 1 | 1 | 1 |
| $17$ | $2$ | $I_{6}$ | nonsplit multiplicative | 1 | 1 | 6 | 6 |
| $53$ | $2$ | $I_0^{*}$ | additive | 1 | 2 | 6 | 0 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $2$ | 2B | 8.6.0.6 |
| $3$ | 3B | 3.4.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 21624 = 2^{3} \cdot 3 \cdot 17 \cdot 53 \), index $96$, genus $1$, and generators
$\left(\begin{array}{rr} 6361 & 5724 \\ 19398 & 12721 \end{array}\right),\left(\begin{array}{rr} 15106 & 12243 \\ 8745 & 6520 \end{array}\right),\left(\begin{array}{rr} 14417 & 5724 \\ 3604 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 12 & 1 \end{array}\right),\left(\begin{array}{rr} 21613 & 12 \\ 21612 & 13 \end{array}\right),\left(\begin{array}{rr} 1 & 6 \\ 6 & 37 \end{array}\right),\left(\begin{array}{rr} 19611 & 13144 \\ 2438 & 7421 \end{array}\right),\left(\begin{array}{rr} 4079 & 0 \\ 0 & 21623 \end{array}\right),\left(\begin{array}{rr} 1 & 12 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 11 & 2 \\ 21574 & 21615 \end{array}\right)$.
The torsion field $K:=\Q(E[21624])$ is a degree-$465584944840704$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/21624\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | nonsplit multiplicative | $4$ | \( 2809 = 53^{2} \) |
| $3$ | good | $2$ | \( 5618 = 2 \cdot 53^{2} \) |
| $17$ | nonsplit multiplicative | $18$ | \( 5618 = 2 \cdot 53^{2} \) |
| $53$ | additive | $1406$ | \( 34 = 2 \cdot 17 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2, 3 and 6.
Its isogeny class 95506.e
consists of 4 curves linked by isogenies of
degrees dividing 6.
Twists
The minimal quadratic twist of this elliptic curve is 34.a1, its twist by $53$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $2$ | \(\Q(\sqrt{2}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
| $2$ | \(\Q(\sqrt{-159}) \) | \(\Z/6\Z\) | not in database |
| $4$ | 4.4.25977632.1 | \(\Z/4\Z\) | not in database |
| $4$ | \(\Q(\sqrt{2}, \sqrt{-159})\) | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
| $6$ | 6.2.1736501328.1 | \(\Z/6\Z\) | not in database |
| $8$ | deg 8 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $8$ | 8.8.43189591316955136.6 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $8$ | deg 8 | \(\Z/12\Z\) | not in database |
| $12$ | deg 12 | \(\Z/3\Z \oplus \Z/6\Z\) | not in database |
| $12$ | deg 12 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
| $16$ | deg 16 | \(\Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
| $18$ | 18.0.3753044601957640012391245025553835684572731136.1 | \(\Z/18\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | nonsplit | ord | ss | ord | ord | ord | nonsplit | ord | ss | ss | ord | ord | ord | ord | ss | add |
| $\lambda$-invariant(s) | 4 | 1 | 1,1 | 3 | 1 | 1 | 1 | 3 | 1,1 | 1,1 | 1 | 1 | 1 | 1 | 1,1 | - |
| $\mu$-invariant(s) | 0 | 1 | 0,0 | 0 | 0 | 0 | 0 | 0 | 0,0 | 0,0 | 0 | 0 | 0 | 0 | 0,0 | - |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.