Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2=x^3-x^2-2847896x+1850854832\)
|
(homogenize, simplify) |
|
\(y^2z=x^3-x^2z-2847896xz^2+1850854832z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-230679603x+1348581133746\)
|
(homogenize, minimize) |
Mordell-Weil group structure
trivial
Invariants
| Conductor: | $N$ | = | \( 94864 \) | = | $2^{4} \cdot 7^{2} \cdot 11^{2}$ |
|
| Discriminant: | $\Delta$ | = | $-103297466330189824$ | = | $-1 \cdot 2^{12} \cdot 7^{6} \cdot 11^{8} $ |
|
| j-invariant: | $j$ | = | \( -24729001 \) | = | $-1 \cdot 11 \cdot 131^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.3470890533711081446159408243$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.91761005024874084672859672086$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $0.9685335876741098$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.903923883477584$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ |
|
| Mordell-Weil rank: | $r$ | = | $ 0$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ |
|
| Real period: | $\Omega$ | ≈ | $0.31487406118373842258046814464$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 12 $ = $ 2\cdot2\cdot3 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $1$ |
|
| Special value: | $ L(E,1)$ | ≈ | $3.7784887342048610709656177356 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $1$ (exact) |
|
BSD formula
$$\begin{aligned} 3.778488734 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.314874 \cdot 1.000000 \cdot 12}{1^2} \\ & \approx 3.778488734\end{aligned}$$
Modular invariants
Modular form 94864.2.a.cw
For more coefficients, see the Downloads section to the right.
| Modular degree: | 1520640 |
|
| $ \Gamma_0(N) $-optimal: | no | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 3 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $2$ | $I_{4}^{*}$ | additive | -1 | 4 | 12 | 0 |
| $7$ | $2$ | $I_0^{*}$ | additive | -1 | 2 | 6 | 0 |
| $11$ | $3$ | $IV^{*}$ | additive | -1 | 2 | 8 | 0 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $2$ | 2G | 4.2.0.1 |
| $11$ | 11B.10.5 | 11.60.1.3 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 616 = 2^{3} \cdot 7 \cdot 11 \), index $480$, genus $16$, and generators
$\left(\begin{array}{rr} 309 & 462 \\ 462 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 176 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 196 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 335 & 308 \\ 462 & 447 \end{array}\right),\left(\begin{array}{rr} 309 & 308 \\ 154 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 308 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 540 & 231 \\ 77 & 463 \end{array}\right),\left(\begin{array}{rr} 263 & 0 \\ 0 & 615 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 308 & 1 \end{array}\right),\left(\begin{array}{rr} 309 & 308 \\ 308 & 309 \end{array}\right),\left(\begin{array}{rr} 441 & 176 \\ 440 & 441 \end{array}\right),\left(\begin{array}{rr} 307 & 231 \\ 0 & 461 \end{array}\right)$.
The torsion field $K:=\Q(E[616])$ is a degree-$85155840$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/616\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | additive | $2$ | \( 5929 = 7^{2} \cdot 11^{2} \) |
| $7$ | additive | $26$ | \( 1936 = 2^{4} \cdot 11^{2} \) |
| $11$ | additive | $52$ | \( 784 = 2^{4} \cdot 7^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
11.
Its isogeny class 94864cr
consists of 2 curves linked by isogenies of
degree 11.
Twists
The minimal quadratic twist of this elliptic curve is 121a1, its twist by $-308$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $3$ | 3.1.484.1 | \(\Z/2\Z\) | not in database |
| $6$ | 6.0.937024.1 | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
| $8$ | 8.2.19681203370752.2 | \(\Z/3\Z\) | not in database |
| $10$ | 10.10.3689195226078208.1 | \(\Z/11\Z\) | not in database |
| $12$ | deg 12 | \(\Z/4\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | add | ord | ord | add | add | ord | ord | ord | ord | ord | ord | ord | ord | ss | ord |
| $\lambda$-invariant(s) | - | 8 | 0 | - | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0,0 | 0 |
| $\mu$-invariant(s) | - | 0 | 0 | - | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0,0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.