Properties

Label 94815.bf
Number of curves $1$
Conductor $94815$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bf1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 94815.bf1 has rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(3\)\(1\)
\(5\)\(1 - T\)
\(7\)\(1\)
\(43\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(2\) \( 1 + 2 T^{2}\) 1.2.a
\(11\) \( 1 - 5 T + 11 T^{2}\) 1.11.af
\(13\) \( 1 - 5 T + 13 T^{2}\) 1.13.af
\(17\) \( 1 - 5 T + 17 T^{2}\) 1.17.af
\(19\) \( 1 - 6 T + 19 T^{2}\) 1.19.ag
\(23\) \( 1 - 9 T + 23 T^{2}\) 1.23.aj
\(29\) \( 1 + 8 T + 29 T^{2}\) 1.29.i
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 94815.bf do not have complex multiplication.

Modular form 94815.2.a.bf

Copy content sage:E.q_eigenform(10)
 
\(q - 2 q^{4} + q^{5} + 5 q^{11} + 5 q^{13} + 4 q^{16} + 5 q^{17} + 6 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 94815.bf

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
94815.bf1 94815bc1 \([0, 0, 1, 800268, 1302414475]\) \(660867352100864/8926548046875\) \(-765595399900594921875\) \([]\) \(4423680\) \(2.6880\) \(\Gamma_0(N)\)-optimal