Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2=x^3+x^2+656055x-188217900\)
|
(homogenize, simplify) |
|
\(y^2z=x^3+x^2z+656055xz^2-188217900z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3+53140428x-137370270411\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(260, 0)$ | $0$ | $2$ |
Integral points
\( \left(260, 0\right) \)
Invariants
| Conductor: | $N$ | = | \( 94380 \) | = | $2^{2} \cdot 3 \cdot 5 \cdot 11^{2} \cdot 13$ |
|
| Discriminant: | $\Delta$ | = | $-33411349511718750000$ | = | $-1 \cdot 2^{4} \cdot 3^{2} \cdot 5^{14} \cdot 11^{3} \cdot 13^{4} $ |
|
| j-invariant: | $j$ | = | \( \frac{1466377408837894144}{1568902587890625} \) | = | $2^{14} \cdot 3^{-2} \cdot 5^{-14} \cdot 13^{-4} \cdot 41^{3} \cdot 1091^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.4329359830934325800956001229$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $1.6024131047071915076077035213$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $1.0452730778312722$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.52162543044317$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ |
|
| Mordell-Weil rank: | $r$ | = | $ 0$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ |
|
| Real period: | $\Omega$ | ≈ | $0.11217691877497983365939447035$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 112 $ = $ 1\cdot2\cdot( 2 \cdot 7 )\cdot2\cdot2 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
| Special value: | $ L(E,1)$ | ≈ | $3.1409537256994353424630451697 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $1$ (exact) |
|
BSD formula
$$\begin{aligned} 3.140953726 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.112177 \cdot 1.000000 \cdot 112}{2^2} \\ & \approx 3.140953726\end{aligned}$$
Modular invariants
Modular form 94380.2.a.w
For more coefficients, see the Downloads section to the right.
| Modular degree: | 2193408 |
|
| $ \Gamma_0(N) $-optimal: | yes | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 5 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $1$ | $IV$ | additive | -1 | 2 | 4 | 0 |
| $3$ | $2$ | $I_{2}$ | split multiplicative | -1 | 1 | 2 | 2 |
| $5$ | $14$ | $I_{14}$ | split multiplicative | -1 | 1 | 14 | 14 |
| $11$ | $2$ | $III$ | additive | 1 | 2 | 3 | 0 |
| $13$ | $2$ | $I_{4}$ | nonsplit multiplicative | 1 | 1 | 4 | 4 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $2$ | 2B | 2.3.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 220 = 2^{2} \cdot 5 \cdot 11 \), index $12$, genus $0$, and generators
$\left(\begin{array}{rr} 1 & 2 \\ 2 & 5 \end{array}\right),\left(\begin{array}{rr} 217 & 4 \\ 216 & 5 \end{array}\right),\left(\begin{array}{rr} 3 & 4 \\ 8 & 11 \end{array}\right),\left(\begin{array}{rr} 177 & 4 \\ 134 & 9 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 184 & 1 \\ 119 & 0 \end{array}\right),\left(\begin{array}{rr} 169 & 56 \\ 164 & 55 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 4 & 1 \end{array}\right)$.
The torsion field $K:=\Q(E[220])$ is a degree-$50688000$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/220\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | additive | $2$ | \( 11 \) |
| $3$ | split multiplicative | $4$ | \( 31460 = 2^{2} \cdot 5 \cdot 11^{2} \cdot 13 \) |
| $5$ | split multiplicative | $6$ | \( 18876 = 2^{2} \cdot 3 \cdot 11^{2} \cdot 13 \) |
| $7$ | good | $2$ | \( 18876 = 2^{2} \cdot 3 \cdot 11^{2} \cdot 13 \) |
| $11$ | additive | $42$ | \( 780 = 2^{2} \cdot 3 \cdot 5 \cdot 13 \) |
| $13$ | nonsplit multiplicative | $14$ | \( 7260 = 2^{2} \cdot 3 \cdot 5 \cdot 11^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2.
Its isogeny class 94380w
consists of 2 curves linked by isogenies of
degree 2.
Twists
This elliptic curve is its own minimal quadratic twist.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $2$ | \(\Q(\sqrt{-11}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
| $4$ | 4.2.2129600.2 | \(\Z/4\Z\) | not in database |
| $8$ | 8.0.14694035558400.35 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $8$ | 8.0.4535196160000.3 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $8$ | deg 8 | \(\Z/6\Z\) | not in database |
| $16$ | deg 16 | \(\Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 |
|---|---|---|---|---|---|---|
| Reduction type | add | split | split | ord | add | nonsplit |
| $\lambda$-invariant(s) | - | 1 | 1 | 2 | - | 0 |
| $\mu$-invariant(s) | - | 0 | 0 | 0 | - | 0 |
All Iwasawa $\lambda$ and $\mu$-invariants for primes $p\ge 11$ of good reduction are zero.
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.