Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2=x^3-x^2+3071x-15455\)
|
(homogenize, simplify) |
|
\(y^2z=x^3-x^2z+3071xz^2-15455z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3+248724x-10520496\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(37, 384)$ | $1.7178992968149188558124724386$ | $\infty$ |
| $(5, 0)$ | $0$ | $2$ |
Integral points
\( \left(5, 0\right) \), \((37,\pm 384)\), \((103,\pm 1176)\)
Invariants
| Conductor: | $N$ | = | \( 9408 \) | = | $2^{6} \cdot 3 \cdot 7^{2}$ |
|
| Discriminant: | $\Delta$ | = | $-1942981705728$ | = | $-1 \cdot 2^{18} \cdot 3^{2} \cdot 7^{7} $ |
|
| j-invariant: | $j$ | = | \( \frac{103823}{63} \) | = | $3^{-2} \cdot 7^{-1} \cdot 47^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $1.0471604579185964233109422264$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.96551538744897819336758232751$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $0.9786808587681587$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $3.9022102020227893$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
| Mordell-Weil rank: | $r$ | = | $ 1$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $1.7178992968149188558124724386$ |
|
| Real period: | $\Omega$ | ≈ | $0.48226265395982068031940353104$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 16 $ = $ 2^{2}\cdot2\cdot2 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
| Special value: | $ L'(E,1)$ | ≈ | $3.3139146964706899566918711217 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 3.313914696 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.482263 \cdot 1.717899 \cdot 16}{2^2} \\ & \approx 3.313914696\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
| Modular degree: | 12288 |
|
| $ \Gamma_0(N) $-optimal: | yes | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 3 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $4$ | $I_{8}^{*}$ | additive | -1 | 6 | 18 | 0 |
| $3$ | $2$ | $I_{2}$ | nonsplit multiplicative | 1 | 1 | 2 | 2 |
| $7$ | $2$ | $I_{1}^{*}$ | additive | -1 | 2 | 7 | 1 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $2$ | 2B | 16.48.0.186 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 336 = 2^{4} \cdot 3 \cdot 7 \), index $192$, genus $1$, and generators
$\left(\begin{array}{rr} 176 & 331 \\ 93 & 14 \end{array}\right),\left(\begin{array}{rr} 5 & 4 \\ 332 & 333 \end{array}\right),\left(\begin{array}{rr} 1 & 16 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 125 & 16 \\ 304 & 21 \end{array}\right),\left(\begin{array}{rr} 335 & 320 \\ 244 & 123 \end{array}\right),\left(\begin{array}{rr} 31 & 320 \\ 262 & 129 \end{array}\right),\left(\begin{array}{rr} 15 & 2 \\ 238 & 323 \end{array}\right),\left(\begin{array}{rr} 321 & 16 \\ 320 & 17 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 16 & 1 \end{array}\right)$.
The torsion field $K:=\Q(E[336])$ is a degree-$12386304$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/336\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | additive | $2$ | \( 49 = 7^{2} \) |
| $3$ | nonsplit multiplicative | $4$ | \( 3136 = 2^{6} \cdot 7^{2} \) |
| $7$ | additive | $32$ | \( 192 = 2^{6} \cdot 3 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2, 4 and 8.
Its isogeny class 9408cd
consists of 6 curves linked by isogenies of
degrees dividing 8.
Twists
The minimal quadratic twist of this elliptic curve is 21a4, its twist by $56$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $2$ | \(\Q(\sqrt{-7}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
| $2$ | \(\Q(\sqrt{14}) \) | \(\Z/4\Z\) | 2.2.56.1-63.1-b2 |
| $2$ | \(\Q(\sqrt{-2}) \) | \(\Z/4\Z\) | 2.0.8.1-21609.2-a2 |
| $4$ | \(\Q(\sqrt{-2}, \sqrt{-7})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $4$ | \(\Q(\sqrt{6}, \sqrt{14})\) | \(\Z/8\Z\) | not in database |
| $4$ | \(\Q(\sqrt{-3}, \sqrt{14})\) | \(\Z/8\Z\) | not in database |
| $8$ | 8.0.156132458496.21 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $8$ | 8.0.7710244864.2 | \(\Z/8\Z\) | not in database |
| $8$ | 8.0.796594176.1 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $8$ | 8.0.7169347584.9 | \(\Z/16\Z\) | not in database |
| $8$ | 8.2.85365421682688.20 | \(\Z/6\Z\) | not in database |
| $16$ | deg 16 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
| $16$ | 16.0.59447875862838378496.4 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/16\Z\) | not in database |
| $16$ | 16.0.51399544780206637056.11 | \(\Z/2\Z \oplus \Z/16\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
| $16$ | deg 16 | \(\Z/12\Z\) | not in database |
| $16$ | deg 16 | \(\Z/12\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | add | nonsplit | ord | add | ord | ord | ord | ord | ss | ord | ss | ord | ord | ord | ss |
| $\lambda$-invariant(s) | - | 3 | 1 | - | 1 | 1 | 1 | 1 | 1,1 | 1 | 3,1 | 1 | 3 | 1 | 1,1 |
| $\mu$-invariant(s) | - | 0 | 0 | - | 0 | 0 | 0 | 0 | 0,0 | 0 | 0,0 | 0 | 0 | 0 | 0,0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
Note: $p$-adic regulator data only exists for primes $p\ge 5$ of good ordinary reduction.