Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2=x^3-x^2-751x+3655\)
|
(homogenize, simplify) |
|
\(y^2z=x^3-x^2z-751xz^2+3655z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-60858x+2481948\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(-9, 98)$ | $1.2219825510130739623170725959$ | $\infty$ |
| $(-179/9, 2744/27)$ | $3.5635973171698342157158815062$ | $\infty$ |
| $(5, 0)$ | $0$ | $2$ |
Integral points
\((-9,\pm 98)\), \( \left(5, 0\right) \), \((30,\pm 85)\), \((54,\pm 343)\), \((366,\pm 6973)\)
Invariants
| Conductor: | $N$ | = | \( 94080 \) | = | $2^{7} \cdot 3 \cdot 5 \cdot 7^{2}$ |
|
| Discriminant: | $\Delta$ | = | $22136835840$ | = | $2^{8} \cdot 3 \cdot 5 \cdot 7^{8} $ |
|
| j-invariant: | $j$ | = | \( \frac{1557376}{735} \) | = | $2^{7} \cdot 3^{-1} \cdot 5^{-1} \cdot 7^{-2} \cdot 23^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $0.67921290148197002835040743058$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.75584029341898349714709035545$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $0.7960428391559143$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $2.748814533204877$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 2$ |
|
| Mordell-Weil rank: | $r$ | = | $ 2$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $4.0278044766223493614182919023$ |
|
| Real period: | $\Omega$ | ≈ | $1.0768259774906697287308302438$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 8 $ = $ 2\cdot1\cdot1\cdot2^{2} $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
| Special value: | $ L^{(2)}(E,1)/2!$ | ≈ | $8.6744889853603134821393802618 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 8.674488985 \approx L^{(2)}(E,1)/2! & \overset{?}{=} \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 1.076826 \cdot 4.027804 \cdot 8}{2^2} \\ & \approx 8.674488985\end{aligned}$$
Modular invariants
Modular form 94080.2.a.e
For more coefficients, see the Downloads section to the right.
| Modular degree: | 61440 |
|
| $ \Gamma_0(N) $-optimal: | yes | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $2$ | $III$ | additive | 1 | 7 | 8 | 0 |
| $3$ | $1$ | $I_{1}$ | nonsplit multiplicative | 1 | 1 | 1 | 1 |
| $5$ | $1$ | $I_{1}$ | nonsplit multiplicative | 1 | 1 | 1 | 1 |
| $7$ | $4$ | $I_{2}^{*}$ | additive | -1 | 2 | 8 | 2 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $2$ | 2B | 2.3.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 840 = 2^{3} \cdot 3 \cdot 5 \cdot 7 \), index $12$, genus $0$, and generators
$\left(\begin{array}{rr} 837 & 4 \\ 836 & 5 \end{array}\right),\left(\begin{array}{rr} 1 & 2 \\ 2 & 5 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 421 & 4 \\ 2 & 9 \end{array}\right),\left(\begin{array}{rr} 316 & 529 \\ 105 & 736 \end{array}\right),\left(\begin{array}{rr} 241 & 4 \\ 482 & 9 \end{array}\right),\left(\begin{array}{rr} 562 & 1 \\ 559 & 0 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 4 & 1 \end{array}\right),\left(\begin{array}{rr} 674 & 1 \\ 503 & 0 \end{array}\right),\left(\begin{array}{rr} 3 & 4 \\ 8 & 11 \end{array}\right)$.
The torsion field $K:=\Q(E[840])$ is a degree-$5945425920$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/840\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | additive | $2$ | \( 735 = 3 \cdot 5 \cdot 7^{2} \) |
| $3$ | nonsplit multiplicative | $4$ | \( 31360 = 2^{7} \cdot 5 \cdot 7^{2} \) |
| $5$ | nonsplit multiplicative | $6$ | \( 18816 = 2^{7} \cdot 3 \cdot 7^{2} \) |
| $7$ | additive | $32$ | \( 1920 = 2^{7} \cdot 3 \cdot 5 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2.
Its isogeny class 94080m
consists of 2 curves linked by isogenies of
degree 2.
Twists
The minimal quadratic twist of this elliptic curve is 13440bk2, its twist by $-56$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $2$ | \(\Q(\sqrt{15}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
| $4$ | 4.0.752640.2 | \(\Z/4\Z\) | not in database |
| $8$ | 8.4.7169347584000000.11 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $8$ | 8.0.509820272640000.2 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $8$ | deg 8 | \(\Z/6\Z\) | not in database |
| $16$ | deg 16 | \(\Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | add | nonsplit | nonsplit | add | ord | ord | ord | ord | ss | ss | ord | ord | ss | ord | ord |
| $\lambda$-invariant(s) | - | 2 | 8 | - | 2 | 2 | 2 | 2 | 2,2 | 2,2 | 2 | 2 | 2,2 | 2 | 2 |
| $\mu$-invariant(s) | - | 0 | 0 | - | 0 | 0 | 0 | 0 | 0,0 | 0,0 | 0 | 0 | 0,0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
Note: $p$-adic regulator data only exists for primes $p\ge 5$ of good ordinary reduction.