Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2=x^3-x^2-5161x-550535\)
|
(homogenize, simplify) |
|
\(y^2z=x^3-x^2z-5161xz^2-550535z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-418068x-402594192\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(201, 2548)$ | $2.5712764932061262267671257091$ | $\infty$ |
| $(103, 0)$ | $0$ | $2$ |
Integral points
\( \left(103, 0\right) \), \((201,\pm 2548)\), \((373,\pm 7020)\)
Invariants
| Conductor: | $N$ | = | \( 94080 \) | = | $2^{7} \cdot 3 \cdot 5 \cdot 7^{2}$ |
|
| Discriminant: | $\Delta$ | = | $-122954311065600$ | = | $-1 \cdot 2^{13} \cdot 3^{6} \cdot 5^{2} \cdot 7^{7} $ |
|
| j-invariant: | $j$ | = | \( -\frac{15777248}{127575} \) | = | $-1 \cdot 2^{5} \cdot 3^{-6} \cdot 5^{-2} \cdot 7^{-1} \cdot 79^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $1.3863707185082136603070556332$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.33749380162605041078095553677$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $0.8973395198108246$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $3.4899601550800945$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
| Mordell-Weil rank: | $r$ | = | $ 1$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $2.5712764932061262267671257091$ |
|
| Real period: | $\Omega$ | ≈ | $0.24798680700048612016351947458$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 32 $ = $ 2^{2}\cdot2\cdot2\cdot2 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
| Special value: | $ L'(E,1)$ | ≈ | $5.1011411797247550813141486435 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 5.101141180 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.247987 \cdot 2.571276 \cdot 32}{2^2} \\ & \approx 5.101141180\end{aligned}$$
Modular invariants
Modular form 94080.2.a.x
For more coefficients, see the Downloads section to the right.
| Modular degree: | 221184 |
|
| $ \Gamma_0(N) $-optimal: | no | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $4$ | $I_{2}^{*}$ | additive | -1 | 7 | 13 | 0 |
| $3$ | $2$ | $I_{6}$ | nonsplit multiplicative | 1 | 1 | 6 | 6 |
| $5$ | $2$ | $I_{2}$ | nonsplit multiplicative | 1 | 1 | 2 | 2 |
| $7$ | $2$ | $I_{1}^{*}$ | additive | -1 | 2 | 7 | 1 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $2$ | 2B | 2.3.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 840 = 2^{3} \cdot 3 \cdot 5 \cdot 7 \), index $12$, genus $0$, and generators
$\left(\begin{array}{rr} 837 & 4 \\ 836 & 5 \end{array}\right),\left(\begin{array}{rr} 529 & 316 \\ 104 & 735 \end{array}\right),\left(\begin{array}{rr} 1 & 2 \\ 2 & 5 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 337 & 4 \\ 674 & 9 \end{array}\right),\left(\begin{array}{rr} 281 & 4 \\ 562 & 9 \end{array}\right),\left(\begin{array}{rr} 2 & 1 \\ 419 & 0 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 4 & 1 \end{array}\right),\left(\begin{array}{rr} 3 & 4 \\ 8 & 11 \end{array}\right),\left(\begin{array}{rr} 482 & 1 \\ 599 & 0 \end{array}\right)$.
The torsion field $K:=\Q(E[840])$ is a degree-$5945425920$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/840\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | additive | $4$ | \( 49 = 7^{2} \) |
| $3$ | nonsplit multiplicative | $4$ | \( 31360 = 2^{7} \cdot 5 \cdot 7^{2} \) |
| $5$ | nonsplit multiplicative | $6$ | \( 18816 = 2^{7} \cdot 3 \cdot 7^{2} \) |
| $7$ | additive | $32$ | \( 1920 = 2^{7} \cdot 3 \cdot 5 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2.
Its isogeny class 94080.x
consists of 2 curves linked by isogenies of
degree 2.
Twists
The minimal quadratic twist of this elliptic curve is 13440.m2, its twist by $-56$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $2$ | \(\Q(\sqrt{-14}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
| $4$ | 4.2.806400.8 | \(\Z/4\Z\) | not in database |
| $8$ | 8.0.1776440416665600.13 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $8$ | 8.0.509820272640000.5 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $8$ | deg 8 | \(\Z/6\Z\) | not in database |
| $16$ | deg 16 | \(\Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | add | nonsplit | nonsplit | add | ss | ord | ord | ss | ord | ord | ord | ord | ord | ord | ord |
| $\lambda$-invariant(s) | - | 1 | 1 | - | 1,1 | 1 | 1 | 1,1 | 1 | 1 | 1 | 1 | 1 | 1 | 3 |
| $\mu$-invariant(s) | - | 0 | 0 | - | 0,0 | 0 | 0 | 0,0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.