Properties

Label 9408.bj
Number of curves 4
Conductor 9408
CM no
Rank 0
Graph

Related objects

Downloads

Learn more about

Show commands for: SageMath
sage: E = EllipticCurve("9408.bj1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 9408.bj

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
9408.bj1 9408k3 [0, -1, 0, -6337, 196225] [2] 9216  
9408.bj2 9408k2 [0, -1, 0, -457, 2185] [2, 2] 4608  
9408.bj3 9408k1 [0, -1, 0, -212, -1098] [2] 2304 \(\Gamma_0(N)\)-optimal
9408.bj4 9408k4 [0, -1, 0, 1503, 14337] [2] 9216  

Rank

sage: E.rank()
 

The elliptic curves in class 9408.bj have rank \(0\).

Modular form 9408.2.a.bj

sage: E.q_eigenform(10)
 
\( q - q^{3} + 2q^{5} + q^{9} + 4q^{11} - 2q^{13} - 2q^{15} + 6q^{17} + 4q^{19} + O(q^{20}) \)

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.