Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2=x^3-x^2-2809x-51911\)
|
(homogenize, simplify) |
\(y^2z=x^3-x^2z-2809xz^2-51911z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-227556x-38525760\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(-35, 48)$ | $2.0125038110202692489211439723$ | $\infty$ |
$(-23, 0)$ | $0$ | $2$ |
$(61, 0)$ | $0$ | $2$ |
Integral points
\( \left(-37, 0\right) \), \((-35,\pm 48)\), \( \left(-23, 0\right) \), \( \left(61, 0\right) \), \((75,\pm 392)\), \((649,\pm 16464)\)
Invariants
Conductor: | $N$ | = | \( 9408 \) | = | $2^{6} \cdot 3 \cdot 7^{2}$ |
|
Discriminant: | $\Delta$ | = | $212513624064$ | = | $2^{12} \cdot 3^{2} \cdot 7^{8} $ |
|
j-invariant: | $j$ | = | \( \frac{5088448}{441} \) | = | $2^{6} \cdot 3^{-2} \cdot 7^{-2} \cdot 43^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $0.91432184654094493249802743549$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.75178040854665702947188105769$ |
|
||
$abc$ quality: | $Q$ | ≈ | $0.9666197140470211$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $3.8730449105769593$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
Mordell-Weil rank: | $r$ | = | $ 1$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $2.0125038110202692489211439723$ |
|
Real period: | $\Omega$ | ≈ | $0.65938992101227194529664258564$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 32 $ = $ 2^{2}\cdot2\cdot2^{2} $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $4$ |
|
Special value: | $ L'(E,1)$ | ≈ | $2.6540494579711032122459358627 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 2.654049458 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.659390 \cdot 2.012504 \cdot 32}{4^2} \\ & \approx 2.654049458\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
Modular degree: | 12288 |
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 3 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $4$ | $I_{2}^{*}$ | additive | -1 | 6 | 12 | 0 |
$3$ | $2$ | $I_{2}$ | nonsplit multiplicative | 1 | 1 | 2 | 2 |
$7$ | $4$ | $I_{2}^{*}$ | additive | -1 | 2 | 8 | 2 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2Cs | 8.12.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 168 = 2^{3} \cdot 3 \cdot 7 \), index $48$, genus $0$, and generators
$\left(\begin{array}{rr} 45 & 2 \\ 160 & 163 \end{array}\right),\left(\begin{array}{rr} 165 & 4 \\ 164 & 5 \end{array}\right),\left(\begin{array}{rr} 117 & 166 \\ 146 & 1 \end{array}\right),\left(\begin{array}{rr} 113 & 4 \\ 58 & 9 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 83 & 164 \\ 166 & 159 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 4 & 1 \end{array}\right)$.
The torsion field $K:=\Q(E[168])$ is a degree-$3096576$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/168\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | additive | $2$ | \( 49 = 7^{2} \) |
$3$ | nonsplit multiplicative | $4$ | \( 3136 = 2^{6} \cdot 7^{2} \) |
$7$ | additive | $32$ | \( 192 = 2^{6} \cdot 3 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2.
Its isogeny class 9408.g
consists of 4 curves linked by isogenies of
degrees dividing 4.
Twists
The minimal quadratic twist of this elliptic curve is 672.b3, its twist by $-56$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z \oplus \Z/{2}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$4$ | \(\Q(\sqrt{-2}, \sqrt{7})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$4$ | \(\Q(\sqrt{-6}, \sqrt{14})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$4$ | \(\Q(\sqrt{2}, \sqrt{21})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | 8.2.5463386987692032.30 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$16$ | 16.0.162447943996702457856.1 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | add | nonsplit | ord | add | ord | ord | ord | ord | ord | ord | ord | ord | ord | ord | ss |
$\lambda$-invariant(s) | - | 1 | 1 | - | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1,1 |
$\mu$-invariant(s) | - | 0 | 0 | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0,0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.