Properties

Label 9386.b
Number of curves $1$
Conductor $9386$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("b1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 9386.b1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(13\)\(1 + T\)
\(19\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 + T + 3 T^{2}\) 1.3.b
\(5\) \( 1 - 4 T + 5 T^{2}\) 1.5.ae
\(7\) \( 1 - 2 T + 7 T^{2}\) 1.7.ac
\(11\) \( 1 - 3 T + 11 T^{2}\) 1.11.ad
\(17\) \( 1 + 6 T + 17 T^{2}\) 1.17.g
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 + 8 T + 29 T^{2}\) 1.29.i
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 9386.b do not have complex multiplication.

Modular form 9386.2.a.b

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} - q^{3} + q^{4} + 4 q^{5} + q^{6} + 2 q^{7} - q^{8} - 2 q^{9} - 4 q^{10} + 3 q^{11} - q^{12} - q^{13} - 2 q^{14} - 4 q^{15} + q^{16} - 6 q^{17} + 2 q^{18} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 9386.b

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
9386.b1 9386a1 \([1, 1, 0, -103253, 12727405]\) \(-934165699635529/21632\) \(-2819103872\) \([]\) \(40320\) \(1.3360\) \(\Gamma_0(N)\)-optimal