Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2=x^3-16563x+693938\)
|
(homogenize, simplify) |
|
\(y^2z=x^3-16563xz^2+693938z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-16563x+693938\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z/{2}\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(49, 0)$ | $0$ | $2$ |
| $(97, 0)$ | $0$ | $2$ |
Integral points
\( \left(-146, 0\right) \), \( \left(49, 0\right) \), \( \left(97, 0\right) \)
Invariants
| Conductor: | $N$ | = | \( 9360 \) | = | $2^{4} \cdot 3^{2} \cdot 5 \cdot 13$ |
|
| Discriminant: | $\Delta$ | = | $82772148326400$ | = | $2^{12} \cdot 3^{14} \cdot 5^{2} \cdot 13^{2} $ |
|
| j-invariant: | $j$ | = | \( \frac{168288035761}{27720225} \) | = | $3^{-8} \cdot 5^{-2} \cdot 13^{-2} \cdot 5521^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $1.3921496218487160779632034313$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.14969629695471592284834869138$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $1.0179337433150557$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.457293170236663$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ |
|
| Mordell-Weil rank: | $r$ | = | $ 0$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ |
|
| Real period: | $\Omega$ | ≈ | $0.58064817205570954330264641721$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 64 $ = $ 2^{2}\cdot2^{2}\cdot2\cdot2 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $4$ |
|
| Special value: | $ L(E,1)$ | ≈ | $2.3225926882228381732105856688 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $1$ (exact) |
|
BSD formula
$$\begin{aligned} 2.322592688 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.580648 \cdot 1.000000 \cdot 64}{4^2} \\ & \approx 2.322592688\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
| Modular degree: | 24576 |
|
| $ \Gamma_0(N) $-optimal: | no | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $4$ | $I_{4}^{*}$ | additive | -1 | 4 | 12 | 0 |
| $3$ | $4$ | $I_{8}^{*}$ | additive | -1 | 2 | 14 | 8 |
| $5$ | $2$ | $I_{2}$ | nonsplit multiplicative | 1 | 1 | 2 | 2 |
| $13$ | $2$ | $I_{2}$ | split multiplicative | -1 | 1 | 2 | 2 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $2$ | 2Cs | 16.48.0.4 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 3120 = 2^{4} \cdot 3 \cdot 5 \cdot 13 \), index $768$, genus $13$, and generators
$\left(\begin{array}{rr} 13 & 8 \\ 2330 & 3077 \end{array}\right),\left(\begin{array}{rr} 3105 & 3112 \\ 2672 & 1711 \end{array}\right),\left(\begin{array}{rr} 1 & 16 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 633 & 16 \\ 818 & 345 \end{array}\right),\left(\begin{array}{rr} 3111 & 3112 \\ 1084 & 39 \end{array}\right),\left(\begin{array}{rr} 1 & 16 \\ 4 & 65 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 16 & 1 \end{array}\right),\left(\begin{array}{rr} 5 & 16 \\ 4 & 2353 \end{array}\right),\left(\begin{array}{rr} 3105 & 16 \\ 3104 & 17 \end{array}\right)$.
The torsion field $K:=\Q(E[3120])$ is a degree-$19322634240$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/3120\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | additive | $2$ | \( 9 = 3^{2} \) |
| $3$ | additive | $8$ | \( 1040 = 2^{4} \cdot 5 \cdot 13 \) |
| $5$ | nonsplit multiplicative | $6$ | \( 1872 = 2^{4} \cdot 3^{2} \cdot 13 \) |
| $13$ | split multiplicative | $14$ | \( 720 = 2^{4} \cdot 3^{2} \cdot 5 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2, 4 and 8.
Its isogeny class 9360bm
consists of 8 curves linked by isogenies of
degrees dividing 16.
Twists
The minimal quadratic twist of this elliptic curve is 195a2, its twist by $12$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z \oplus \Z/{2}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $2$ | \(\Q(\sqrt{3}) \) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $4$ | \(\Q(\sqrt{-3}, \sqrt{-65})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $4$ | \(\Q(\sqrt{-3}, \sqrt{65})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $4$ | \(\Q(\sqrt{3}, \sqrt{13})\) | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $8$ | 8.0.370150560000.10 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
| $8$ | 8.0.12960000.1 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $8$ | 8.8.62555444640000.4 | \(\Z/2\Z \oplus \Z/16\Z\) | not in database |
| $8$ | deg 8 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $16$ | 16.0.137011437068313600000000.1 | \(\Z/4\Z \oplus \Z/8\Z\) | not in database |
| $16$ | 16.0.10017750154516748107776.1 | \(\Z/2\Z \oplus \Z/16\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 13 |
|---|---|---|---|---|
| Reduction type | add | add | nonsplit | split |
| $\lambda$-invariant(s) | - | - | 0 | 1 |
| $\mu$-invariant(s) | - | - | 0 | 0 |
All Iwasawa $\lambda$ and $\mu$-invariants for primes $p\ge 3$ of good reduction are zero.
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.