Properties

Label 93600.er
Number of curves $2$
Conductor $93600$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("er1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 93600.er have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(5\)\(1\)
\(13\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 - 4 T + 7 T^{2}\) 1.7.ae
\(11\) \( 1 + 2 T + 11 T^{2}\) 1.11.c
\(17\) \( 1 + 17 T^{2}\) 1.17.a
\(19\) \( 1 + 2 T + 19 T^{2}\) 1.19.c
\(23\) \( 1 - 2 T + 23 T^{2}\) 1.23.ac
\(29\) \( 1 + 10 T + 29 T^{2}\) 1.29.k
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 93600.er do not have complex multiplication.

Modular form 93600.2.a.er

Copy content sage:E.q_eigenform(10)
 
\(q + 4 q^{7} - 2 q^{11} + q^{13} - 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 93600.er

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
93600.er1 93600cm2 \([0, 0, 0, -55875, -1656250]\) \(26463592/13689\) \(9979281000000000\) \([2]\) \(573440\) \(1.7620\)  
93600.er2 93600cm1 \([0, 0, 0, -44625, -3625000]\) \(107850176/117\) \(10661625000000\) \([2]\) \(286720\) \(1.4154\) \(\Gamma_0(N)\)-optimal