Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2=x^3-4683x+122618\)
|
(homogenize, simplify) |
\(y^2z=x^3-4683xz^2+122618z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-4683x+122618\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(37, 0)$ | $0$ | $2$ |
Integral points
\( \left(37, 0\right) \)
Invariants
Conductor: | $N$ | = | \( 9360 \) | = | $2^{4} \cdot 3^{2} \cdot 5 \cdot 13$ |
|
Discriminant: | $\Delta$ | = | $77635584000$ | = | $2^{16} \cdot 3^{6} \cdot 5^{3} \cdot 13 $ |
|
j-invariant: | $j$ | = | \( \frac{3803721481}{26000} \) | = | $2^{-4} \cdot 5^{-3} \cdot 7^{3} \cdot 13^{-1} \cdot 223^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $0.92359658303760889500706856614$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.31885674185639126010778617378$ |
|
||
$abc$ quality: | $Q$ | ≈ | $0.906187683689355$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.042855947812001$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ |
|
Mordell-Weil rank: | $r$ | = | $ 0$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ |
|
Real period: | $\Omega$ | ≈ | $1.0924128157297563366017188830$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 8 $ = $ 2^{2}\cdot2\cdot1\cdot1 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
Special value: | $ L(E,1)$ | ≈ | $2.1848256314595126732034377659 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $1$ (exact) |
|
BSD formula
$$\begin{aligned} 2.184825631 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 1.092413 \cdot 1.000000 \cdot 8}{2^2} \\ & \approx 2.184825631\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
Modular degree: | 13824 |
|
$ \Gamma_0(N) $-optimal: | yes | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $4$ | $I_{8}^{*}$ | additive | -1 | 4 | 16 | 4 |
$3$ | $2$ | $I_0^{*}$ | additive | -1 | 2 | 6 | 0 |
$5$ | $1$ | $I_{3}$ | nonsplit multiplicative | 1 | 1 | 3 | 3 |
$13$ | $1$ | $I_{1}$ | split multiplicative | -1 | 1 | 1 | 1 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 4.6.0.3 |
$3$ | 3B | 3.4.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 1560 = 2^{3} \cdot 3 \cdot 5 \cdot 13 \), index $384$, genus $9$, and generators
$\left(\begin{array}{rr} 1266 & 7 \\ 209 & 1520 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 24 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 24 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 7 & 24 \\ 492 & 127 \end{array}\right),\left(\begin{array}{rr} 519 & 1556 \\ 500 & 1479 \end{array}\right),\left(\begin{array}{rr} 1537 & 24 \\ 1536 & 25 \end{array}\right),\left(\begin{array}{rr} 1 & 12 \\ 12 & 145 \end{array}\right),\left(\begin{array}{rr} 781 & 24 \\ 780 & 1 \end{array}\right),\left(\begin{array}{rr} 136 & 21 \\ 795 & 1186 \end{array}\right),\left(\begin{array}{rr} 1169 & 1536 \\ 0 & 1559 \end{array}\right),\left(\begin{array}{rr} 21 & 4 \\ 1460 & 1541 \end{array}\right)$.
The torsion field $K:=\Q(E[1560])$ is a degree-$2415329280$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/1560\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | additive | $2$ | \( 585 = 3^{2} \cdot 5 \cdot 13 \) |
$3$ | additive | $2$ | \( 208 = 2^{4} \cdot 13 \) |
$5$ | nonsplit multiplicative | $6$ | \( 1872 = 2^{4} \cdot 3^{2} \cdot 13 \) |
$13$ | split multiplicative | $14$ | \( 720 = 2^{4} \cdot 3^{2} \cdot 5 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2, 3 and 6.
Its isogeny class 9360.z
consists of 4 curves linked by isogenies of
degrees dividing 6.
Twists
The minimal quadratic twist of this elliptic curve is 130.a2, its twist by $12$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{65}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$2$ | \(\Q(\sqrt{3}) \) | \(\Z/6\Z\) | not in database |
$4$ | 4.0.9360.1 | \(\Z/4\Z\) | not in database |
$4$ | \(\Q(\sqrt{3}, \sqrt{65})\) | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$6$ | 6.0.65804544.1 | \(\Z/6\Z\) | not in database |
$8$ | 8.4.97742882250000.6 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | 8.0.370150560000.22 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | 8.0.87609600.3 | \(\Z/12\Z\) | not in database |
$12$ | deg 12 | \(\Z/3\Z \oplus \Z/6\Z\) | not in database |
$12$ | deg 12 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$12$ | deg 12 | \(\Z/12\Z\) | not in database |
$16$ | deg 16 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
$16$ | deg 16 | \(\Z/24\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
$18$ | 18.6.8737619415242597747712000000000000.1 | \(\Z/18\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 13 |
---|---|---|---|---|
Reduction type | add | add | nonsplit | split |
$\lambda$-invariant(s) | - | - | 0 | 1 |
$\mu$-invariant(s) | - | - | 0 | 0 |
All Iwasawa $\lambda$ and $\mu$-invariants for primes $p\ge 5$ of good reduction are zero.
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.