Properties

Label 936.b
Number of curves $4$
Conductor $936$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("b1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 936.b have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(13\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 2 T + 5 T^{2}\) 1.5.c
\(7\) \( 1 + 7 T^{2}\) 1.7.a
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(17\) \( 1 + 2 T + 17 T^{2}\) 1.17.c
\(19\) \( 1 + 4 T + 19 T^{2}\) 1.19.e
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 + 6 T + 29 T^{2}\) 1.29.g
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 936.b do not have complex multiplication.

Modular form 936.2.a.b

Copy content sage:E.q_eigenform(10)
 
\(q - 2 q^{5} + q^{13} - 2 q^{17} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 936.b

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
936.b1 936e3 \([0, 0, 0, -7491, 249550]\) \(62275269892/39\) \(29113344\) \([4]\) \(512\) \(0.75243\)  
936.b2 936e2 \([0, 0, 0, -471, 3850]\) \(61918288/1521\) \(283855104\) \([2, 2]\) \(256\) \(0.40586\)  
936.b3 936e1 \([0, 0, 0, -66, -119]\) \(2725888/1053\) \(12282192\) \([2]\) \(128\) \(0.059284\) \(\Gamma_0(N)\)-optimal
936.b4 936e4 \([0, 0, 0, 69, 12166]\) \(48668/85683\) \(-63962016768\) \([2]\) \(512\) \(0.75243\)