Properties

Label 9310k
Number of curves $1$
Conductor $9310$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("k1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 9310k1 has rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(5\)\(1 - T\)
\(7\)\(1\)
\(19\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 - T + 3 T^{2}\) 1.3.ab
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(13\) \( 1 - 4 T + 13 T^{2}\) 1.13.ae
\(17\) \( 1 - 8 T + 17 T^{2}\) 1.17.ai
\(23\) \( 1 - 5 T + 23 T^{2}\) 1.23.af
\(29\) \( 1 + 3 T + 29 T^{2}\) 1.29.d
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 9310k do not have complex multiplication.

Modular form 9310.2.a.k

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} + q^{3} + q^{4} + q^{5} - q^{6} - q^{8} - 2 q^{9} - q^{10} + q^{12} + 3 q^{13} + q^{15} + q^{16} + 7 q^{17} + 2 q^{18} + q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 9310k

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
9310.i1 9310k1 \([1, 0, 1, 72, -444]\) \(357911/950\) \(-111766550\) \([]\) \(3024\) \(0.22799\) \(\Gamma_0(N)\)-optimal