Properties

Label 925.e
Number of curves $1$
Conductor $925$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("e1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 925.e1 has rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(5\)\(1\)
\(37\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(2\) \( 1 - 2 T + 2 T^{2}\) 1.2.ac
\(3\) \( 1 - 3 T + 3 T^{2}\) 1.3.ad
\(7\) \( 1 - T + 7 T^{2}\) 1.7.ab
\(11\) \( 1 + 5 T + 11 T^{2}\) 1.11.f
\(13\) \( 1 - 2 T + 13 T^{2}\) 1.13.ac
\(17\) \( 1 + 17 T^{2}\) 1.17.a
\(19\) \( 1 + 19 T^{2}\) 1.19.a
\(23\) \( 1 + 2 T + 23 T^{2}\) 1.23.c
\(29\) \( 1 - 6 T + 29 T^{2}\) 1.29.ag
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 925.e do not have complex multiplication.

Modular form 925.2.a.e

Copy content sage:E.q_eigenform(10)
 
\(q + 2 q^{2} + 3 q^{3} + 2 q^{4} + 6 q^{6} + q^{7} + 6 q^{9} - 5 q^{11} + 6 q^{12} + 2 q^{13} + 2 q^{14} - 4 q^{16} + 12 q^{18} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 925.e

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
925.e1 925e1 \([0, 0, 1, -25, 31]\) \(110592/37\) \(578125\) \([]\) \(256\) \(-0.19182\) \(\Gamma_0(N)\)-optimal