Show commands: SageMath
Rank
The elliptic curves in class 92400hf have rank \(1\).
L-function data
Bad L-factors: |
| |||||||||||||||||||||
Good L-factors: |
| |||||||||||||||||||||
See L-function page for more information |
Complex multiplication
The elliptic curves in class 92400hf do not have complex multiplication.Modular form 92400.2.a.hf
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrrrrrr} 1 & 2 & 3 & 4 & 4 & 6 & 12 & 12 \\ 2 & 1 & 6 & 2 & 2 & 3 & 6 & 6 \\ 3 & 6 & 1 & 12 & 12 & 2 & 4 & 4 \\ 4 & 2 & 12 & 1 & 4 & 6 & 3 & 12 \\ 4 & 2 & 12 & 4 & 1 & 6 & 12 & 3 \\ 6 & 3 & 2 & 6 & 6 & 1 & 2 & 2 \\ 12 & 6 & 4 & 3 & 12 & 2 & 1 & 4 \\ 12 & 6 & 4 & 12 & 3 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with Cremona labels.
Elliptic curves in class 92400hf
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
92400.hu6 | 92400hf1 | \([0, 1, 0, -114613408, -472320044812]\) | \(2601656892010848045529/56330588160\) | \(3605157642240000000\) | \([2]\) | \(7962624\) | \(3.0877\) | \(\Gamma_0(N)\)-optimal |
92400.hu5 | 92400hf2 | \([0, 1, 0, -114741408, -471212332812]\) | \(2610383204210122997209/12104550027662400\) | \(774691201770393600000000\) | \([2, 2]\) | \(15925248\) | \(3.4342\) | |
92400.hu4 | 92400hf3 | \([0, 1, 0, -122299408, -405367928812]\) | \(3160944030998056790089/720291785342976000\) | \(46098674261950464000000000\) | \([2]\) | \(23887872\) | \(3.6370\) | |
92400.hu7 | 92400hf4 | \([0, 1, 0, -56421408, -949786252812]\) | \(-310366976336070130009/5909282337130963560\) | \(-378194069576381667840000000\) | \([4]\) | \(31850496\) | \(3.7808\) | |
92400.hu3 | 92400hf5 | \([0, 1, 0, -175109408, 78257203188]\) | \(9278380528613437145689/5328033205714065000\) | \(340994125165700160000000000\) | \([2]\) | \(31850496\) | \(3.7808\) | |
92400.hu2 | 92400hf6 | \([0, 1, 0, -646587408, 5981508487188]\) | \(467116778179943012100169/28800309694464000000\) | \(1843219820445696000000000000\) | \([2, 2]\) | \(47775744\) | \(3.9835\) | |
92400.hu8 | 92400hf7 | \([0, 1, 0, 505412592, 24977988487188]\) | \(223090928422700449019831/4340371122724101696000\) | \(-277783751854342508544000000000\) | \([4]\) | \(95551488\) | \(4.3301\) | |
92400.hu1 | 92400hf8 | \([0, 1, 0, -10187195408, 395753507719188]\) | \(1826870018430810435423307849/7641104625000000000\) | \(489030696000000000000000000\) | \([2]\) | \(95551488\) | \(4.3301\) |