Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2+y=x^3-31350x-2136519\)
|
(homogenize, simplify) |
|
\(y^2z+yz^2=x^3-31350xz^2-2136519z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-501600x-136737200\)
|
(homogenize, minimize) |
Mordell-Weil group structure
trivial
Invariants
| Conductor: | $N$ | = | \( 9225 \) | = | $3^{2} \cdot 5^{2} \cdot 41$ |
|
| Discriminant: | $\Delta$ | = | $-20679451875$ | = | $-1 \cdot 3^{9} \cdot 5^{4} \cdot 41^{2} $ |
|
| j-invariant: | $j$ | = | \( -\frac{7478746316800}{45387} \) | = | $-1 \cdot 2^{15} \cdot 3^{-3} \cdot 5^{2} \cdot 11^{3} \cdot 19^{3} \cdot 41^{-2}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $1.1669917865393211954532961640$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.081206338060566224888753767796$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $1.0113100029644233$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.674047431937646$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ |
|
| Mordell-Weil rank: | $r$ | = | $ 0$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ |
|
| Real period: | $\Omega$ | ≈ | $0.17939486786962338676928303205$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 4 $ = $ 2\cdot1\cdot2 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $1$ |
|
| Special value: | $ L(E,1)$ | ≈ | $0.71757947147849354707713212820 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $1$ (exact) |
|
BSD formula
$$\begin{aligned} 0.717579471 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.179395 \cdot 1.000000 \cdot 4}{1^2} \\ & \approx 0.717579471\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
| Modular degree: | 12096 |
|
| $ \Gamma_0(N) $-optimal: | yes | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 3 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $3$ | $2$ | $I_{3}^{*}$ | additive | -1 | 2 | 9 | 3 |
| $5$ | $1$ | $IV$ | additive | -1 | 2 | 4 | 0 |
| $41$ | $2$ | $I_{2}$ | split multiplicative | -1 | 1 | 2 | 2 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $3$ | 3B.1.2 | 3.8.0.2 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has label 6.16.0-6.b.1.1, level \( 6 = 2 \cdot 3 \), index $16$, genus $0$, and generators
$\left(\begin{array}{rr} 0 & 5 \\ 5 & 0 \end{array}\right),\left(\begin{array}{rr} 4 & 3 \\ 3 & 1 \end{array}\right),\left(\begin{array}{rr} 3 & 4 \\ 2 & 5 \end{array}\right)$.
The torsion field $K:=\Q(E[6])$ is a degree-$18$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/6\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | good | $2$ | \( 225 = 3^{2} \cdot 5^{2} \) |
| $3$ | additive | $2$ | \( 1025 = 5^{2} \cdot 41 \) |
| $5$ | additive | $14$ | \( 369 = 3^{2} \cdot 41 \) |
| $41$ | split multiplicative | $42$ | \( 225 = 3^{2} \cdot 5^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
3.
Its isogeny class 9225.o
consists of 2 curves linked by isogenies of
degree 3.
Twists
The minimal quadratic twist of this elliptic curve is 3075.g1, its twist by $-3$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $2$ | \(\Q(\sqrt{-3}) \) | \(\Z/3\Z\) | not in database |
| $3$ | 3.1.300.1 | \(\Z/2\Z\) | not in database |
| $3$ | 3.1.126075.1 | \(\Z/3\Z\) | not in database |
| $6$ | 6.0.270000.1 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
| $6$ | 6.0.47684716875.1 | \(\Z/3\Z \oplus \Z/3\Z\) | not in database |
| $9$ | 9.1.384758443521000000.1 | \(\Z/6\Z\) | not in database |
| $12$ | deg 12 | \(\Z/4\Z\) | not in database |
| $18$ | 18.0.10837080802759002822398189766357421875.2 | \(\Z/9\Z\) | not in database |
| $18$ | 18.0.444117179582107640632323000000000000.1 | \(\Z/6\Z \oplus \Z/6\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | ss | add | add | ord | ss | ord | ss | ord | ord | ord | ord | ord | split | ord | ord |
| $\lambda$-invariant(s) | 3,4 | - | - | 0 | 0,0 | 0 | 0,0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
| $\mu$-invariant(s) | 0,0 | - | - | 0 | 0,0 | 0 | 0,0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.