Properties

Label 910.a
Number of curves $4$
Conductor $910$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("a1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 910.a have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(5\)\(1 + T\)
\(7\)\(1 - T\)
\(13\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 + 2 T + 3 T^{2}\) 1.3.c
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(17\) \( 1 + 17 T^{2}\) 1.17.a
\(19\) \( 1 - 2 T + 19 T^{2}\) 1.19.ac
\(23\) \( 1 + 6 T + 23 T^{2}\) 1.23.g
\(29\) \( 1 - 6 T + 29 T^{2}\) 1.29.ag
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 910.a do not have complex multiplication.

Modular form 910.2.a.a

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} - 2 q^{3} + q^{4} - q^{5} + 2 q^{6} + q^{7} - q^{8} + q^{9} + q^{10} - 2 q^{12} + q^{13} - q^{14} + 2 q^{15} + q^{16} - q^{18} + 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 3 & 6 \\ 2 & 1 & 6 & 3 \\ 3 & 6 & 1 & 2 \\ 6 & 3 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 910.a

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
910.a1 910c4 \([1, 0, 1, -14669, -685008]\) \(349046010201856969/7245875000\) \(7245875000\) \([2]\) \(1728\) \(1.0107\)  
910.a2 910c3 \([1, 0, 1, -949, -9984]\) \(94376601570889/12235496000\) \(12235496000\) \([2]\) \(864\) \(0.66414\)  
910.a3 910c2 \([1, 0, 1, -304, 456]\) \(3092354182009/1689383150\) \(1689383150\) \([6]\) \(576\) \(0.46141\)  
910.a4 910c1 \([1, 0, 1, -234, 1352]\) \(1408317602329/2153060\) \(2153060\) \([6]\) \(288\) \(0.11484\) \(\Gamma_0(N)\)-optimal