Properties

Label 90354v
Number of curves $4$
Conductor $90354$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("v1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 90354v have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 - T\)
\(3\)\(1 - T\)
\(11\)\(1 + T\)
\(37\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 5 T^{2}\) 1.5.a
\(7\) \( 1 + T + 7 T^{2}\) 1.7.b
\(13\) \( 1 - T + 13 T^{2}\) 1.13.ab
\(17\) \( 1 + 17 T^{2}\) 1.17.a
\(19\) \( 1 - 4 T + 19 T^{2}\) 1.19.ae
\(23\) \( 1 + 6 T + 23 T^{2}\) 1.23.g
\(29\) \( 1 + 29 T^{2}\) 1.29.a
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 90354v do not have complex multiplication.

Modular form 90354.2.a.v

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} + q^{3} + q^{4} + q^{6} + 2 q^{7} + q^{8} + q^{9} - q^{11} + q^{12} + 4 q^{13} + 2 q^{14} + q^{16} + 6 q^{17} + q^{18} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 3 & 6 \\ 2 & 1 & 6 & 3 \\ 3 & 6 & 1 & 2 \\ 6 & 3 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 90354v

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
90354.x3 90354v1 \([1, 0, 0, -7558, 237920]\) \(18609625/1188\) \(3048082973892\) \([2]\) \(193536\) \(1.1461\) \(\Gamma_0(N)\)-optimal
90354.x4 90354v2 \([1, 0, 0, 6132, 1007298]\) \(9938375/176418\) \(-452640321622962\) \([2]\) \(387072\) \(1.4926\)  
90354.x1 90354v3 \([1, 0, 0, -110233, -14042119]\) \(57736239625/255552\) \(655676515272768\) \([2]\) \(580608\) \(1.6954\)  
90354.x2 90354v4 \([1, 0, 0, -55473, -27984015]\) \(-7357983625/127552392\) \(-327264540685520328\) \([2]\) \(1161216\) \(2.0420\)