Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2+xy+y=x^3+x^2-31194747x+57821093769\)
|
(homogenize, simplify) |
\(y^2z+xyz+yz^2=x^3+x^2z-31194747xz^2+57821093769z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-40428392139x+2698307376776838\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(11559, 1108586)$ | $2.7125594754580054636292816050$ | $\infty$ |
$(-6349, 3174)$ | $0$ | $2$ |
Integral points
\( \left(-6349, 3174\right) \), \( \left(11559, 1108586\right) \), \( \left(11559, -1120146\right) \)
Invariants
Conductor: | $N$ | = | \( 90354 \) | = | $2 \cdot 3 \cdot 11 \cdot 37^{2}$ |
|
Discriminant: | $\Delta$ | = | $497837484621266920931328$ | = | $2^{32} \cdot 3 \cdot 11 \cdot 37^{8} $ |
|
j-invariant: | $j$ | = | \( \frac{1308451928740468777}{194033737531392} \) | = | $2^{-32} \cdot 3^{-1} \cdot 11^{-1} \cdot 37^{-2} \cdot 1093753^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $3.2716218078384035489061436435$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $1.4661628515162913267220958080$ |
|
||
$abc$ quality: | $Q$ | ≈ | $0.9834968982499515$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $5.554128400712591$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
Mordell-Weil rank: | $r$ | = | $ 1$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $2.7125594754580054636292816050$ |
|
Real period: | $\Omega$ | ≈ | $0.089268370889493229563180636602$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 128 $ = $ 2^{5}\cdot1\cdot1\cdot2^{2} $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
Special value: | $ L'(E,1)$ | ≈ | $7.7486644900798220606921202911 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 7.748664490 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.089268 \cdot 2.712559 \cdot 128}{2^2} \\ & \approx 7.748664490\end{aligned}$$
Modular invariants
Modular form 90354.2.a.p
For more coefficients, see the Downloads section to the right.
Modular degree: | 21012480 |
|
$ \Gamma_0(N) $-optimal: | yes | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $32$ | $I_{32}$ | split multiplicative | -1 | 1 | 32 | 32 |
$3$ | $1$ | $I_{1}$ | nonsplit multiplicative | 1 | 1 | 1 | 1 |
$11$ | $1$ | $I_{1}$ | split multiplicative | -1 | 1 | 1 | 1 |
$37$ | $4$ | $I_{2}^{*}$ | additive | 1 | 2 | 8 | 2 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 4.6.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 9768 = 2^{3} \cdot 3 \cdot 11 \cdot 37 \), index $48$, genus $0$, and generators
$\left(\begin{array}{rr} 1 & 0 \\ 8 & 1 \end{array}\right),\left(\begin{array}{rr} 2480 & 7659 \\ 1517 & 5810 \end{array}\right),\left(\begin{array}{rr} 1 & 8 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 4 & 17 \end{array}\right),\left(\begin{array}{rr} 9761 & 8 \\ 9760 & 9 \end{array}\right),\left(\begin{array}{rr} 1148 & 5809 \\ 3367 & 9510 \end{array}\right),\left(\begin{array}{rr} 7697 & 3996 \\ 5846 & 7031 \end{array}\right),\left(\begin{array}{rr} 1555 & 1554 \\ 8362 & 9547 \end{array}\right),\left(\begin{array}{rr} 7 & 6 \\ 9762 & 9763 \end{array}\right),\left(\begin{array}{rr} 5807 & 0 \\ 0 & 9767 \end{array}\right)$.
The torsion field $K:=\Q(E[9768])$ is a degree-$36944982835200$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/9768\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | split multiplicative | $4$ | \( 45177 = 3 \cdot 11 \cdot 37^{2} \) |
$3$ | nonsplit multiplicative | $4$ | \( 30118 = 2 \cdot 11 \cdot 37^{2} \) |
$11$ | split multiplicative | $12$ | \( 8214 = 2 \cdot 3 \cdot 37^{2} \) |
$37$ | additive | $722$ | \( 66 = 2 \cdot 3 \cdot 11 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2 and 4.
Its isogeny class 90354q
consists of 4 curves linked by isogenies of
degrees dividing 4.
Twists
The minimal quadratic twist of this elliptic curve is 2442c1, its twist by $37$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{33}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$2$ | \(\Q(\sqrt{-407}) \) | \(\Z/4\Z\) | not in database |
$2$ | \(\Q(\sqrt{-111}) \) | \(\Z/4\Z\) | not in database |
$4$ | \(\Q(\sqrt{33}, \sqrt{-111})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | deg 8 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | 8.0.29881714817889.3 | \(\Z/8\Z\) | not in database |
$8$ | 8.0.42321374118144.2 | \(\Z/8\Z\) | not in database |
$8$ | deg 8 | \(\Z/6\Z\) | not in database |
$16$ | deg 16 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$16$ | deg 16 | \(\Z/12\Z\) | not in database |
$16$ | deg 16 | \(\Z/12\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | split | nonsplit | ord | ord | split | ord | ord | ss | ord | ord | ord | add | ord | ss | ord |
$\lambda$-invariant(s) | 2 | 1 | 1 | 1 | 2 | 1 | 1 | 1,1 | 1 | 1 | 1 | - | 1 | 1,1 | 1 |
$\mu$-invariant(s) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0,0 | 0 | 0 | 0 | - | 0 | 0,0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
Note: $p$-adic regulator data only exists for primes $p\ge 5$ of good ordinary reduction.