Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2+xy=x^3-220123x-39839407\)
|
(homogenize, simplify) |
\(y^2z+xyz=x^3-220123xz^2-39839407z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-285279435x-1857891534714\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(1382, 47225)$ | $0.93562041760949228264426678139$ | $\infty$ |
Integral points
\( \left(542, 113\right) \), \( \left(542, -655\right) \), \( \left(1382, 47225\right) \), \( \left(1382, -48607\right) \)
Invariants
Conductor: | $N$ | = | \( 90354 \) | = | $2 \cdot 3 \cdot 11 \cdot 37^{2}$ |
|
Discriminant: | $\Delta$ | = | $-2413936161533952$ | = | $-1 \cdot 2^{12} \cdot 3^{5} \cdot 11^{6} \cdot 37^{2} $ |
|
j-invariant: | $j$ | = | \( -\frac{861621756231273625}{1763284267008} \) | = | $-1 \cdot 2^{-12} \cdot 3^{-5} \cdot 5^{3} \cdot 7^{3} \cdot 11^{-6} \cdot 37 \cdot 41^{3} \cdot 199^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $1.8381288087745574849636907062$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $1.2363091566671867442356747610$ |
|
||
$abc$ quality: | $Q$ | ≈ | $1.0070163433869965$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.252113987650482$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
Mordell-Weil rank: | $r$ | = | $ 1$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $0.93562041760949228264426678139$ |
|
Real period: | $\Omega$ | ≈ | $0.11019196701606667618152787409$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 120 $ = $ ( 2^{2} \cdot 3 )\cdot5\cdot2\cdot1 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $1$ |
|
Special value: | $ L'(E,1)$ | ≈ | $12.371742503614044332933917237 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 12.371742504 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.110192 \cdot 0.935620 \cdot 120}{1^2} \\ & \approx 12.371742504\end{aligned}$$
Modular invariants
Modular form 90354.2.a.v
For more coefficients, see the Downloads section to the right.
Modular degree: | 570240 |
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $12$ | $I_{12}$ | split multiplicative | -1 | 1 | 12 | 12 |
$3$ | $5$ | $I_{5}$ | split multiplicative | -1 | 1 | 5 | 5 |
$11$ | $2$ | $I_{6}$ | nonsplit multiplicative | 1 | 1 | 6 | 6 |
$37$ | $1$ | $II$ | additive | 1 | 2 | 2 | 0 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$3$ | 3B | 3.4.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 222 = 2 \cdot 3 \cdot 37 \), index $16$, genus $0$, and generators
$\left(\begin{array}{rr} 1 & 0 \\ 6 & 1 \end{array}\right),\left(\begin{array}{rr} 4 & 3 \\ 9 & 7 \end{array}\right),\left(\begin{array}{rr} 3 & 4 \\ 8 & 11 \end{array}\right),\left(\begin{array}{rr} 117 & 2 \\ 94 & 7 \end{array}\right),\left(\begin{array}{rr} 188 & 39 \\ 1 & 112 \end{array}\right),\left(\begin{array}{rr} 1 & 6 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 217 & 6 \\ 216 & 7 \end{array}\right)$.
The torsion field $K:=\Q(E[222])$ is a degree-$32799168$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/222\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | split multiplicative | $4$ | \( 4107 = 3 \cdot 37^{2} \) |
$3$ | split multiplicative | $4$ | \( 1369 = 37^{2} \) |
$5$ | good | $2$ | \( 30118 = 2 \cdot 11 \cdot 37^{2} \) |
$11$ | nonsplit multiplicative | $12$ | \( 8214 = 2 \cdot 3 \cdot 37^{2} \) |
$37$ | additive | $254$ | \( 66 = 2 \cdot 3 \cdot 11 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
3.
Its isogeny class 90354.v
consists of 2 curves linked by isogenies of
degree 3.
Twists
This elliptic curve is its own minimal quadratic twist.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{-111}) \) | \(\Z/3\Z\) | not in database |
$3$ | 3.1.4107.1 | \(\Z/2\Z\) | not in database |
$6$ | 6.0.50602347.2 | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$6$ | 6.2.4094691316893.1 | \(\Z/3\Z\) | not in database |
$6$ | 6.0.1872286839.2 | \(\Z/6\Z\) | not in database |
$12$ | deg 12 | \(\Z/4\Z\) | not in database |
$12$ | deg 12 | \(\Z/3\Z \oplus \Z/3\Z\) | not in database |
$12$ | 12.0.3505458007492611921.2 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$18$ | 18.0.2647627767468716622544855121600211085156510136586203136.2 | \(\Z/9\Z\) | not in database |
$18$ | 18.2.617882666412014377620739334502252965613.1 | \(\Z/6\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | split | split | ss | ord | nonsplit | ord | ss | ord | ord | ss | ord | add | ss | ord | ord |
$\lambda$-invariant(s) | 2 | 2 | 1,1 | 1 | 1 | 1 | 1,1 | 1 | 3 | 1,1 | 1 | - | 1,1 | 1 | 1 |
$\mu$-invariant(s) | 0 | 1 | 0,0 | 0 | 0 | 0 | 0,0 | 0 | 0 | 0,0 | 0 | - | 0,0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.