Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2+xy+y=x^3+x^2+841x+8363\)
|
(homogenize, simplify) |
\(y^2z+xyz+yz^2=x^3+x^2z+841xz^2+8363z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3+1089909x+373843782\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(1737/64, 109679/512)$ | $3.5411277699249275946132167368$ | $\infty$ |
Integral points
None
Invariants
Conductor: | $N$ | = | \( 90354 \) | = | $2 \cdot 3 \cdot 11 \cdot 37^{2}$ |
|
Discriminant: | $\Delta$ | = | $-65802197934$ | = | $-1 \cdot 2 \cdot 3^{10} \cdot 11 \cdot 37^{3} $ |
|
j-invariant: | $j$ | = | \( \frac{1298596571}{1299078} \) | = | $2^{-1} \cdot 3^{-10} \cdot 11^{-1} \cdot 1091^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $0.76275053822416819209307796971$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.13997893993688791899894594805$ |
|
||
$abc$ quality: | $Q$ | ≈ | $0.9231662754764344$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $2.7881812203012233$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
Mordell-Weil rank: | $r$ | = | $ 1$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $3.5411277699249275946132167368$ |
|
Real period: | $\Omega$ | ≈ | $0.72590457780452179278241029018$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 4 $ = $ 1\cdot2\cdot1\cdot2 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $1$ |
|
Special value: | $ L'(E,1)$ | ≈ | $10.282083435116889397019663335 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 10.282083435 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.725905 \cdot 3.541128 \cdot 4}{1^2} \\ & \approx 10.282083435\end{aligned}$$
Modular invariants
Modular form 90354.2.a.r
For more coefficients, see the Downloads section to the right.
Modular degree: | 100800 |
|
$ \Gamma_0(N) $-optimal: | yes | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $1$ | $I_{1}$ | split multiplicative | -1 | 1 | 1 | 1 |
$3$ | $2$ | $I_{10}$ | nonsplit multiplicative | 1 | 1 | 10 | 10 |
$11$ | $1$ | $I_{1}$ | nonsplit multiplicative | 1 | 1 | 1 | 1 |
$37$ | $2$ | $III$ | additive | -1 | 2 | 3 | 0 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$5$ | 5B | 5.6.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 16280 = 2^{3} \cdot 5 \cdot 11 \cdot 37 \), index $48$, genus $1$, and generators
$\left(\begin{array}{rr} 16271 & 10 \\ 16270 & 11 \end{array}\right),\left(\begin{array}{rr} 4071 & 8150 \\ 0 & 7327 \end{array}\right),\left(\begin{array}{rr} 6 & 13 \\ 16225 & 16161 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 10 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 10 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 11447 & 10 \\ 13265 & 93 \end{array}\right),\left(\begin{array}{rr} 4071 & 10 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 2961 & 10 \\ 14805 & 51 \end{array}\right),\left(\begin{array}{rr} 8141 & 10 \\ 8145 & 51 \end{array}\right)$.
The torsion field $K:=\Q(E[16280])$ is a degree-$369449828352000$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/16280\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | split multiplicative | $4$ | \( 407 = 11 \cdot 37 \) |
$3$ | nonsplit multiplicative | $4$ | \( 30118 = 2 \cdot 11 \cdot 37^{2} \) |
$5$ | good | $2$ | \( 30118 = 2 \cdot 11 \cdot 37^{2} \) |
$11$ | nonsplit multiplicative | $12$ | \( 8214 = 2 \cdot 3 \cdot 37^{2} \) |
$37$ | additive | $362$ | \( 66 = 2 \cdot 3 \cdot 11 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
5.
Its isogeny class 90354.r
consists of 2 curves linked by isogenies of
degree 5.
Twists
This elliptic curve is its own minimal quadratic twist.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$3$ | 3.1.3256.1 | \(\Z/2\Z\) | not in database |
$4$ | 4.0.50653.1 | \(\Z/5\Z\) | not in database |
$6$ | 6.0.34518601216.1 | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$8$ | deg 8 | \(\Z/3\Z\) | not in database |
$12$ | deg 12 | \(\Z/4\Z\) | not in database |
$12$ | deg 12 | \(\Z/10\Z\) | not in database |
$20$ | 20.4.30643531872804425222604441967371036486746000000000000000.3 | \(\Z/5\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | split | nonsplit | ord | ord | nonsplit | ord | ord | ord | ord | ord | ss | add | ord | ord | ord |
$\lambda$-invariant(s) | 8 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1,1 | - | 1 | 1 | 1 |
$\mu$-invariant(s) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0,0 | - | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
Note: $p$-adic regulator data only exists for primes $p\ge 5$ of good ordinary reduction.