Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
9025.a1 |
9025j2 |
9025.a |
9025j |
$2$ |
$13$ |
\( 5^{2} \cdot 19^{2} \) |
\( 5^{3} \cdot 19^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
✓ |
$13$ |
13.14.0.1 |
13B |
$2470$ |
$336$ |
$9$ |
$2.839421448$ |
$1$ |
|
$0$ |
$18720$ |
$1.130718$ |
$2045023375454208$ |
$1.12587$ |
$5.04750$ |
$[0, 0, 1, -94145, -11118444]$ |
\(y^2+y=x^3-94145x-11118444\) |
10.2.0.a.1, 13.14.0.a.1, 26.28.0.a.2, 65.28.0.a.2, 130.56.1.?, $\ldots$ |
$[(-21435/11, -663/11)]$ |
9025.a2 |
9025j1 |
9025.a |
9025j |
$2$ |
$13$ |
\( 5^{2} \cdot 19^{2} \) |
\( 5^{3} \cdot 19^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
✓ |
$13$ |
13.14.0.1 |
13B |
$2470$ |
$336$ |
$9$ |
$0.218417034$ |
$1$ |
|
$6$ |
$1440$ |
$-0.151757$ |
$2101248$ |
$1.11940$ |
$2.77513$ |
$[0, 0, 1, -95, 356]$ |
\(y^2+y=x^3-95x+356\) |
10.2.0.a.1, 13.14.0.a.1, 26.28.0.a.1, 65.28.0.a.1, 130.56.1.?, $\ldots$ |
$[(5, 2)]$ |
9025.b1 |
9025f2 |
9025.b |
9025f |
$2$ |
$13$ |
\( 5^{2} \cdot 19^{2} \) |
\( 5^{9} \cdot 19^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
✓ |
$13$ |
13.14.0.1 |
13B |
$2470$ |
$336$ |
$9$ |
$1$ |
$1$ |
|
$0$ |
$1778400$ |
$3.407658$ |
$2045023375454208$ |
$1.12587$ |
$8.04750$ |
$[0, 0, 1, -849658625, 9532675710156]$ |
\(y^2+y=x^3-849658625x+9532675710156\) |
10.2.0.a.1, 13.14.0.a.1, 26.28.0.a.2, 65.56.0-65.a.2.2, 130.112.1.?, $\ldots$ |
$[]$ |
9025.b2 |
9025f1 |
9025.b |
9025f |
$2$ |
$13$ |
\( 5^{2} \cdot 19^{2} \) |
\( 5^{9} \cdot 19^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
✓ |
$13$ |
13.14.0.1 |
13B |
$2470$ |
$336$ |
$9$ |
$1$ |
$1$ |
|
$0$ |
$136800$ |
$2.125183$ |
$2101248$ |
$1.11940$ |
$5.77513$ |
$[0, 0, 1, -857375, -305439844]$ |
\(y^2+y=x^3-857375x-305439844\) |
10.2.0.a.1, 13.14.0.a.1, 26.28.0.a.1, 65.56.0-65.a.1.2, 130.112.1.?, $\ldots$ |
$[]$ |
9025.c1 |
9025h2 |
9025.c |
9025h |
$2$ |
$2$ |
\( 5^{2} \cdot 19^{2} \) |
\( 5^{9} \cdot 19^{8} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$380$ |
$12$ |
$0$ |
$4.288822299$ |
$1$ |
|
$2$ |
$57600$ |
$1.950281$ |
$13312053/361$ |
$0.88614$ |
$5.33125$ |
$[1, -1, 1, -222805, -39463928]$ |
\(y^2+xy+y=x^3-x^2-222805x-39463928\) |
2.3.0.a.1, 10.6.0.a.1, 76.6.0.?, 380.12.0.? |
$[(544, 40)]$ |
9025.c2 |
9025h1 |
9025.c |
9025h |
$2$ |
$2$ |
\( 5^{2} \cdot 19^{2} \) |
\( - 5^{9} \cdot 19^{7} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$380$ |
$12$ |
$0$ |
$8.577644598$ |
$1$ |
|
$3$ |
$28800$ |
$1.603706$ |
$27/19$ |
$1.11940$ |
$4.67183$ |
$[1, -1, 1, 2820, -2010178]$ |
\(y^2+xy+y=x^3-x^2+2820x-2010178\) |
2.3.0.a.1, 20.6.0.c.1, 76.6.0.?, 190.6.0.?, 380.12.0.? |
$[(2976/5, -2191/5)]$ |
9025.d1 |
9025c3 |
9025.d |
9025c |
$3$ |
$9$ |
\( 5^{2} \cdot 19^{2} \) |
\( - 5^{6} \cdot 19^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$5130$ |
$1296$ |
$43$ |
$1$ |
$1$ |
|
$0$ |
$116640$ |
$2.310379$ |
$-50357871050752/19$ |
$1.10495$ |
$6.46410$ |
$[0, 1, 1, -6943233, 7039600194]$ |
\(y^2+y=x^3+x^2-6943233x+7039600194\) |
3.4.0.a.1, 9.12.0.a.1, 27.36.0.a.1, 30.8.0-3.a.1.2, 38.2.0.a.1, $\ldots$ |
$[]$ |
9025.d2 |
9025c2 |
9025.d |
9025c |
$3$ |
$9$ |
\( 5^{2} \cdot 19^{2} \) |
\( - 5^{6} \cdot 19^{9} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.36.0.2 |
3Cs |
$5130$ |
$1296$ |
$43$ |
$1$ |
$1$ |
|
$0$ |
$38880$ |
$1.761072$ |
$-89915392/6859$ |
$1.03310$ |
$5.02445$ |
$[0, 1, 1, -84233, 9982569]$ |
\(y^2+y=x^3+x^2-84233x+9982569\) |
3.12.0.a.1, 9.36.0.b.1, 30.24.0-3.a.1.1, 38.2.0.a.1, 90.72.0.?, $\ldots$ |
$[]$ |
9025.d3 |
9025c1 |
9025.d |
9025c |
$3$ |
$9$ |
\( 5^{2} \cdot 19^{2} \) |
\( - 5^{6} \cdot 19^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$5130$ |
$1296$ |
$43$ |
$1$ |
$1$ |
|
$0$ |
$12960$ |
$1.211765$ |
$32768/19$ |
$1.31757$ |
$4.14158$ |
$[0, 1, 1, 6017, 9944]$ |
\(y^2+y=x^3+x^2+6017x+9944\) |
3.4.0.a.1, 9.12.0.a.1, 27.36.0.a.1, 30.8.0-3.a.1.1, 38.2.0.a.1, $\ldots$ |
$[]$ |
9025.e1 |
9025d2 |
9025.e |
9025d |
$2$ |
$3$ |
\( 5^{2} \cdot 19^{2} \) |
\( 5^{15} \cdot 19^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.2 |
3B |
$1710$ |
$144$ |
$2$ |
$1$ |
$1$ |
|
$0$ |
$18144$ |
$1.211800$ |
$7575076864/1953125$ |
$1.00586$ |
$4.20451$ |
$[0, 1, 1, -7283, 175719]$ |
\(y^2+y=x^3+x^2-7283x+175719\) |
3.4.0.a.1, 9.12.0.b.1, 10.2.0.a.1, 30.8.0.a.1, 90.24.0.?, $\ldots$ |
$[]$ |
9025.e2 |
9025d1 |
9025.e |
9025d |
$2$ |
$3$ |
\( 5^{2} \cdot 19^{2} \) |
\( 5^{9} \cdot 19^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.2 |
3B |
$1710$ |
$144$ |
$2$ |
$1$ |
$1$ |
|
$0$ |
$6048$ |
$0.662493$ |
$318767104/125$ |
$1.09713$ |
$3.85666$ |
$[0, 1, 1, -2533, -49906]$ |
\(y^2+y=x^3+x^2-2533x-49906\) |
3.4.0.a.1, 9.12.0.b.1, 10.2.0.a.1, 30.8.0.a.1, 90.24.0.?, $\ldots$ |
$[]$ |
9025.f1 |
9025a2 |
9025.f |
9025a |
$2$ |
$19$ |
\( 5^{2} \cdot 19^{2} \) |
\( - 5^{6} \cdot 19^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q(\sqrt{-19})$ |
$-19$ |
$N(\mathrm{U}(1))$ |
|
✓ |
|
|
|
|
|
|
$13.07039459$ |
$1$ |
|
$0$ |
$53200$ |
$1.926790$ |
$-884736$ |
$1.31757$ |
$5.47353$ |
$[0, 0, 1, -342950, -77378094]$ |
\(y^2+y=x^3-342950x-77378094\) |
|
$[(26975364/191, 59664634090/191)]$ |
9025.f2 |
9025a1 |
9025.f |
9025a |
$2$ |
$19$ |
\( 5^{2} \cdot 19^{2} \) |
\( - 5^{6} \cdot 19^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q(\sqrt{-19})$ |
$-19$ |
$N(\mathrm{U}(1))$ |
|
✓ |
|
|
|
|
|
|
$0.687915504$ |
$1$ |
|
$4$ |
$2800$ |
$0.454570$ |
$-884736$ |
$1.31757$ |
$3.53380$ |
$[0, 0, 1, -950, 11281]$ |
\(y^2+y=x^3-950x+11281\) |
|
$[(19, 9)]$ |
9025.g1 |
9025b2 |
9025.g |
9025b |
$2$ |
$3$ |
\( 5^{2} \cdot 19^{2} \) |
\( 5^{15} \cdot 19^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.2 |
3B |
$1710$ |
$144$ |
$2$ |
$7.871937846$ |
$1$ |
|
$0$ |
$344736$ |
$2.684017$ |
$7575076864/1953125$ |
$1.00586$ |
$6.14424$ |
$[0, -1, 1, -2629283, -1221033782]$ |
\(y^2+y=x^3-x^2-2629283x-1221033782\) |
3.4.0.a.1, 6.8.0-3.a.1.2, 9.12.0.b.1, 10.2.0.a.1, 15.8.0-3.a.1.1, $\ldots$ |
$[(-8132/3, 550799/3)]$ |
9025.g2 |
9025b1 |
9025.g |
9025b |
$2$ |
$3$ |
\( 5^{2} \cdot 19^{2} \) |
\( 5^{9} \cdot 19^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.2 |
3B |
$1710$ |
$144$ |
$2$ |
$2.623979282$ |
$1$ |
|
$0$ |
$114912$ |
$2.134712$ |
$318767104/125$ |
$1.09713$ |
$5.79639$ |
$[0, -1, 1, -914533, 336816593]$ |
\(y^2+y=x^3-x^2-914533x+336816593\) |
3.4.0.a.1, 6.8.0-3.a.1.1, 9.12.0.b.1, 10.2.0.a.1, 15.8.0-3.a.1.2, $\ldots$ |
$[(3613/3, 157924/3)]$ |
9025.h1 |
9025g2 |
9025.h |
9025g |
$2$ |
$2$ |
\( 5^{2} \cdot 19^{2} \) |
\( 5^{3} \cdot 19^{8} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$380$ |
$12$ |
$0$ |
$5.103380677$ |
$1$ |
|
$2$ |
$11520$ |
$1.145561$ |
$13312053/361$ |
$0.88614$ |
$4.27099$ |
$[1, -1, 0, -8912, -313929]$ |
\(y^2+xy=x^3-x^2-8912x-313929\) |
2.3.0.a.1, 10.6.0.a.1, 76.6.0.?, 380.12.0.? |
$[(314, 5113)]$ |
9025.h2 |
9025g1 |
9025.h |
9025g |
$2$ |
$2$ |
\( 5^{2} \cdot 19^{2} \) |
\( - 5^{3} \cdot 19^{7} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$380$ |
$12$ |
$0$ |
$10.20676135$ |
$1$ |
|
$1$ |
$5760$ |
$0.798987$ |
$27/19$ |
$1.11940$ |
$3.61157$ |
$[1, -1, 0, 113, -16104]$ |
\(y^2+xy=x^3-x^2+113x-16104\) |
2.3.0.a.1, 20.6.0.c.1, 76.6.0.?, 190.6.0.?, 380.12.0.? |
$[(22312/17, 3099944/17)]$ |
9025.i1 |
9025e2 |
9025.i |
9025e |
$2$ |
$13$ |
\( 5^{2} \cdot 19^{2} \) |
\( 5^{3} \cdot 19^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
✓ |
$13$ |
13.14.0.1 |
13B |
$2470$ |
$336$ |
$9$ |
$1$ |
$1$ |
|
$0$ |
$355680$ |
$2.602936$ |
$2045023375454208$ |
$1.12587$ |
$6.98723$ |
$[0, 0, 1, -33986345, 76261405681]$ |
\(y^2+y=x^3-33986345x+76261405681\) |
10.2.0.a.1, 13.14.0.a.1, 26.28.0.a.2, 65.56.0-65.a.2.1, 130.112.1.?, $\ldots$ |
$[]$ |
9025.i2 |
9025e1 |
9025.i |
9025e |
$2$ |
$13$ |
\( 5^{2} \cdot 19^{2} \) |
\( 5^{3} \cdot 19^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
✓ |
$13$ |
13.14.0.1 |
13B |
$2470$ |
$336$ |
$9$ |
$1$ |
$1$ |
|
$0$ |
$27360$ |
$1.320463$ |
$2101248$ |
$1.11940$ |
$4.71487$ |
$[0, 0, 1, -34295, -2443519]$ |
\(y^2+y=x^3-34295x-2443519\) |
10.2.0.a.1, 13.14.0.a.1, 26.28.0.a.1, 65.56.0-65.a.1.1, 130.112.1.?, $\ldots$ |
$[]$ |
9025.j1 |
9025i2 |
9025.j |
9025i |
$2$ |
$13$ |
\( 5^{2} \cdot 19^{2} \) |
\( 5^{9} \cdot 19^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
✓ |
$13$ |
13.14.0.1 |
13B |
$2470$ |
$336$ |
$9$ |
$36.12045904$ |
$1$ |
|
$0$ |
$93600$ |
$1.935436$ |
$2045023375454208$ |
$1.12587$ |
$6.10776$ |
$[0, 0, 1, -2353625, -1389805469]$ |
\(y^2+y=x^3-2353625x-1389805469\) |
10.2.0.a.1, 13.14.0.a.1, 26.28.0.a.2, 65.28.0.a.2, 130.56.1.?, $\ldots$ |
$[(-30469437852917017775/185471924, -3045254335445093006866887/185471924)]$ |
9025.j2 |
9025i1 |
9025.j |
9025i |
$2$ |
$13$ |
\( 5^{2} \cdot 19^{2} \) |
\( 5^{9} \cdot 19^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
✓ |
$13$ |
13.14.0.1 |
13B |
$2470$ |
$336$ |
$9$ |
$2.778496849$ |
$1$ |
|
$0$ |
$7200$ |
$0.652962$ |
$2101248$ |
$1.11940$ |
$3.83540$ |
$[0, 0, 1, -2375, 44531]$ |
\(y^2+y=x^3-2375x+44531\) |
10.2.0.a.1, 13.14.0.a.1, 26.28.0.a.1, 65.28.0.a.1, 130.56.1.?, $\ldots$ |
$[(425/4, 843/4)]$ |