Learn more

Refine search


Results (21 matches)

  displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-$m$ images
9025.a1 9025.a \( 5^{2} \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $2.839421448$ $[0, 0, 1, -94145, -11118444]$ \(y^2+y=x^3-94145x-11118444\) 10.2.0.a.1, 13.14.0.a.1, 26.28.0.a.2, 65.28.0.a.2, 130.56.1.?, $\ldots$
9025.a2 9025.a \( 5^{2} \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $0.218417034$ $[0, 0, 1, -95, 356]$ \(y^2+y=x^3-95x+356\) 10.2.0.a.1, 13.14.0.a.1, 26.28.0.a.1, 65.28.0.a.1, 130.56.1.?, $\ldots$
9025.b1 9025.b \( 5^{2} \cdot 19^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 1, -849658625, 9532675710156]$ \(y^2+y=x^3-849658625x+9532675710156\) 10.2.0.a.1, 13.14.0.a.1, 26.28.0.a.2, 65.56.0-65.a.2.2, 130.112.1.?, $\ldots$
9025.b2 9025.b \( 5^{2} \cdot 19^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 1, -857375, -305439844]$ \(y^2+y=x^3-857375x-305439844\) 10.2.0.a.1, 13.14.0.a.1, 26.28.0.a.1, 65.56.0-65.a.1.2, 130.112.1.?, $\ldots$
9025.c1 9025.c \( 5^{2} \cdot 19^{2} \) $1$ $\Z/2\Z$ $4.288822299$ $[1, -1, 1, -222805, -39463928]$ \(y^2+xy+y=x^3-x^2-222805x-39463928\) 2.3.0.a.1, 10.6.0.a.1, 76.6.0.?, 380.12.0.?
9025.c2 9025.c \( 5^{2} \cdot 19^{2} \) $1$ $\Z/2\Z$ $8.577644598$ $[1, -1, 1, 2820, -2010178]$ \(y^2+xy+y=x^3-x^2+2820x-2010178\) 2.3.0.a.1, 20.6.0.c.1, 76.6.0.?, 190.6.0.?, 380.12.0.?
9025.d1 9025.d \( 5^{2} \cdot 19^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 1, -6943233, 7039600194]$ \(y^2+y=x^3+x^2-6943233x+7039600194\) 3.4.0.a.1, 9.12.0.a.1, 27.36.0.a.1, 30.8.0-3.a.1.2, 38.2.0.a.1, $\ldots$
9025.d2 9025.d \( 5^{2} \cdot 19^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 1, -84233, 9982569]$ \(y^2+y=x^3+x^2-84233x+9982569\) 3.12.0.a.1, 9.36.0.b.1, 30.24.0-3.a.1.1, 38.2.0.a.1, 90.72.0.?, $\ldots$
9025.d3 9025.d \( 5^{2} \cdot 19^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 1, 6017, 9944]$ \(y^2+y=x^3+x^2+6017x+9944\) 3.4.0.a.1, 9.12.0.a.1, 27.36.0.a.1, 30.8.0-3.a.1.1, 38.2.0.a.1, $\ldots$
9025.e1 9025.e \( 5^{2} \cdot 19^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 1, -7283, 175719]$ \(y^2+y=x^3+x^2-7283x+175719\) 3.4.0.a.1, 9.12.0.b.1, 10.2.0.a.1, 30.8.0.a.1, 90.24.0.?, $\ldots$
9025.e2 9025.e \( 5^{2} \cdot 19^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 1, -2533, -49906]$ \(y^2+y=x^3+x^2-2533x-49906\) 3.4.0.a.1, 9.12.0.b.1, 10.2.0.a.1, 30.8.0.a.1, 90.24.0.?, $\ldots$
9025.f1 9025.f \( 5^{2} \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $-19$ $13.07039459$ $[0, 0, 1, -342950, -77378094]$ \(y^2+y=x^3-342950x-77378094\)
9025.f2 9025.f \( 5^{2} \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $-19$ $0.687915504$ $[0, 0, 1, -950, 11281]$ \(y^2+y=x^3-950x+11281\)
9025.g1 9025.g \( 5^{2} \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $7.871937846$ $[0, -1, 1, -2629283, -1221033782]$ \(y^2+y=x^3-x^2-2629283x-1221033782\) 3.4.0.a.1, 6.8.0-3.a.1.2, 9.12.0.b.1, 10.2.0.a.1, 15.8.0-3.a.1.1, $\ldots$
9025.g2 9025.g \( 5^{2} \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $2.623979282$ $[0, -1, 1, -914533, 336816593]$ \(y^2+y=x^3-x^2-914533x+336816593\) 3.4.0.a.1, 6.8.0-3.a.1.1, 9.12.0.b.1, 10.2.0.a.1, 15.8.0-3.a.1.2, $\ldots$
9025.h1 9025.h \( 5^{2} \cdot 19^{2} \) $1$ $\Z/2\Z$ $5.103380677$ $[1, -1, 0, -8912, -313929]$ \(y^2+xy=x^3-x^2-8912x-313929\) 2.3.0.a.1, 10.6.0.a.1, 76.6.0.?, 380.12.0.?
9025.h2 9025.h \( 5^{2} \cdot 19^{2} \) $1$ $\Z/2\Z$ $10.20676135$ $[1, -1, 0, 113, -16104]$ \(y^2+xy=x^3-x^2+113x-16104\) 2.3.0.a.1, 20.6.0.c.1, 76.6.0.?, 190.6.0.?, 380.12.0.?
9025.i1 9025.i \( 5^{2} \cdot 19^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 1, -33986345, 76261405681]$ \(y^2+y=x^3-33986345x+76261405681\) 10.2.0.a.1, 13.14.0.a.1, 26.28.0.a.2, 65.56.0-65.a.2.1, 130.112.1.?, $\ldots$
9025.i2 9025.i \( 5^{2} \cdot 19^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 1, -34295, -2443519]$ \(y^2+y=x^3-34295x-2443519\) 10.2.0.a.1, 13.14.0.a.1, 26.28.0.a.1, 65.56.0-65.a.1.1, 130.112.1.?, $\ldots$
9025.j1 9025.j \( 5^{2} \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $36.12045904$ $[0, 0, 1, -2353625, -1389805469]$ \(y^2+y=x^3-2353625x-1389805469\) 10.2.0.a.1, 13.14.0.a.1, 26.28.0.a.2, 65.28.0.a.2, 130.56.1.?, $\ldots$
9025.j2 9025.j \( 5^{2} \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $2.778496849$ $[0, 0, 1, -2375, 44531]$ \(y^2+y=x^3-2375x+44531\) 10.2.0.a.1, 13.14.0.a.1, 26.28.0.a.1, 65.28.0.a.1, 130.56.1.?, $\ldots$
  displayed columns for results