Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
| \(y^2+xy=x^3-x^2-20634x-1021762\) | (homogenize, simplify) | 
| \(y^2z+xyz=x^3-x^2z-20634xz^2-1021762z^3\) | (dehomogenize, simplify) | 
| \(y^2=x^3-330147x-65722914\) | (homogenize, minimize) | 
Mordell-Weil group structure
\(\Z \oplus \Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order | 
|---|---|---|
| $(-73, 339)$ | $1.4121315165737605461048347132$ | $\infty$ | 
| $(-61, -54)$ | $2.0242229342730410761548417440$ | $\infty$ | 
| $(-413/4, 413/8)$ | $0$ | $2$ | 
Integral points
      
    \( \left(-83, 379\right) \), \( \left(-83, -296\right) \), \( \left(-73, 339\right) \), \( \left(-73, -266\right) \), \( \left(-61, 115\right) \), \( \left(-61, -54\right) \), \( \left(169, 460\right) \), \( \left(169, -629\right) \), \( \left(203, 1666\right) \), \( \left(203, -1869\right) \), \( \left(277, 3664\right) \), \( \left(277, -3941\right) \), \( \left(3203, 179466\right) \), \( \left(3203, -182669\right) \)
    
    
    
        
    
    
        
    
      
Invariants
| Conductor: | $N$ | = | \( 90090 \) | = | $2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 11 \cdot 13$ |  | 
| Discriminant: | $\Delta$ | = | $106693932495150$ | = | $2 \cdot 3^{6} \cdot 5^{2} \cdot 7 \cdot 11^{4} \cdot 13^{4} $ |  | 
| j-invariant: | $j$ | = | \( \frac{1332779492447649}{146356560350} \) | = | $2^{-1} \cdot 3^{3} \cdot 5^{-2} \cdot 7^{-1} \cdot 11^{-4} \cdot 13^{-4} \cdot 36683^{3}$ |  | 
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |  | ||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $1.4252357833147967024735318446$ |  | ||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.87592963898074185677590922614$ |  | ||
| $abc$ quality: | $Q$ | ≈ | $0.9346885365628436$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $3.6304056408866976$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 2$ |  | 
| Mordell-Weil rank: | $r$ | = | $ 2$ |  | 
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $2.7344390489877766448579322785$ |  | 
| Real period: | $\Omega$ | ≈ | $0.40117776972514166534670428736$ |  | 
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 32 $ = $ 1\cdot2\cdot2\cdot1\cdot2^{2}\cdot2 $ |  | 
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |  | 
| Special value: | $ L^{(2)}(E,1)/2!$ | ≈ | $8.7759692729780290274117220491 $ |  | 
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |  | 
BSD formula
$$\begin{aligned} 8.775969273 \approx L^{(2)}(E,1)/2! & \overset{?}{=} \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.401178 \cdot 2.734439 \cdot 32}{2^2} \\ & \approx 8.775969273\end{aligned}$$
Modular invariants
Modular form 90090.2.a.bl
For more coefficients, see the Downloads section to the right.
| Modular degree: | 458752 |  | 
| $ \Gamma_0(N) $-optimal: | no | |
| Manin constant: | 1 |  | 
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 6 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ | 
|---|---|---|---|---|---|---|---|
| $2$ | $1$ | $I_{1}$ | nonsplit multiplicative | 1 | 1 | 1 | 1 | 
| $3$ | $2$ | $I_0^{*}$ | additive | -1 | 2 | 6 | 0 | 
| $5$ | $2$ | $I_{2}$ | split multiplicative | -1 | 1 | 2 | 2 | 
| $7$ | $1$ | $I_{1}$ | nonsplit multiplicative | 1 | 1 | 1 | 1 | 
| $11$ | $4$ | $I_{4}$ | split multiplicative | -1 | 1 | 4 | 4 | 
| $13$ | $2$ | $I_{4}$ | nonsplit multiplicative | 1 | 1 | 4 | 4 | 
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image | 
|---|---|---|
| $2$ | 2B | 4.6.0.1 | 
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 24024 = 2^{3} \cdot 3 \cdot 7 \cdot 11 \cdot 13 \), index $48$, genus $0$, and generators
$\left(\begin{array}{rr} 15016 & 11019 \\ 13017 & 5038 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 8 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 8 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 4 & 17 \end{array}\right),\left(\begin{array}{rr} 7 & 6 \\ 24018 & 24019 \end{array}\right),\left(\begin{array}{rr} 13732 & 16017 \\ 14895 & 8014 \end{array}\right),\left(\begin{array}{rr} 4369 & 8016 \\ 9468 & 8041 \end{array}\right),\left(\begin{array}{rr} 12937 & 8016 \\ 19716 & 8041 \end{array}\right),\left(\begin{array}{rr} 24017 & 8 \\ 24016 & 9 \end{array}\right),\left(\begin{array}{rr} 5008 & 17025 \\ 13041 & 5080 \end{array}\right),\left(\begin{array}{rr} 16015 & 0 \\ 0 & 24023 \end{array}\right)$.
The torsion field $K:=\Q(E[24024])$ is a degree-$1071246842265600$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/24024\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor | 
|---|---|---|---|
| $2$ | nonsplit multiplicative | $4$ | \( 63 = 3^{2} \cdot 7 \) | 
| $3$ | additive | $6$ | \( 10010 = 2 \cdot 5 \cdot 7 \cdot 11 \cdot 13 \) | 
| $5$ | split multiplicative | $6$ | \( 18018 = 2 \cdot 3^{2} \cdot 7 \cdot 11 \cdot 13 \) | 
| $7$ | nonsplit multiplicative | $8$ | \( 12870 = 2 \cdot 3^{2} \cdot 5 \cdot 11 \cdot 13 \) | 
| $11$ | split multiplicative | $12$ | \( 8190 = 2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 13 \) | 
| $13$ | nonsplit multiplicative | $14$ | \( 6930 = 2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 11 \) | 
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2 and 4.
Its isogeny class 90090bp
consists of 4 curves linked by isogenies of
degrees dividing 4.
Twists
The minimal quadratic twist of this elliptic curve is 10010m3, its twist by $-3$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve | 
|---|---|---|---|
| $2$ | \(\Q(\sqrt{14}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database | 
| $2$ | \(\Q(\sqrt{-6}) \) | \(\Z/4\Z\) | not in database | 
| $2$ | \(\Q(\sqrt{-21}) \) | \(\Z/4\Z\) | not in database | 
| $4$ | \(\Q(\sqrt{-6}, \sqrt{14})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database | 
| $8$ | deg 8 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database | 
| $8$ | deg 8 | \(\Z/8\Z\) | not in database | 
| $8$ | deg 8 | \(\Z/8\Z\) | not in database | 
| $8$ | deg 8 | \(\Z/6\Z\) | not in database | 
| $16$ | deg 16 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database | 
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database | 
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database | 
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database | 
| $16$ | deg 16 | \(\Z/12\Z\) | not in database | 
| $16$ | deg 16 | \(\Z/12\Z\) | not in database | 
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | nonsplit | add | split | nonsplit | split | nonsplit | ord | ord | ss | ord | ss | ord | ord | ord | ss | 
| $\lambda$-invariant(s) | 3 | - | 3 | 2 | 3 | 2 | 2 | 2 | 2,2 | 2 | 2,2 | 2 | 2 | 2 | 2,2 | 
| $\mu$-invariant(s) | 2 | - | 0 | 0 | 0 | 0 | 0 | 0 | 0,0 | 0 | 0,0 | 0 | 0 | 0 | 0,0 | 
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.
