Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2+xy=x^3-x^2-4884x+115388\)
|
(homogenize, simplify) |
\(y^2z+xyz=x^3-x^2z-4884xz^2+115388z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-78147x+7306686\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z \oplus \Z/{2}\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(17, 184)$ | $0.70606575828688027305241735661$ | $\infty$ |
$(2, 324)$ | $1.0121114671365205380774208720$ | $\infty$ |
$(28, -14)$ | $0$ | $2$ |
$(52, -26)$ | $0$ | $2$ |
Integral points
\( \left(-76, 246\right) \), \( \left(-76, -170\right) \), \( \left(-68, 394\right) \), \( \left(-68, -326\right) \), \( \left(-53, 499\right) \), \( \left(-53, -446\right) \), \( \left(-38, 514\right) \), \( \left(-38, -476\right) \), \( \left(-11, 415\right) \), \( \left(-11, -404\right) \), \( \left(2, 324\right) \), \( \left(2, -326\right) \), \( \left(17, 184\right) \), \( \left(17, -201\right) \), \( \left(22, 124\right) \), \( \left(22, -146\right) \), \( \left(28, -14\right) \), \( \left(52, -26\right) \), \( \left(53, 31\right) \), \( \left(53, -84\right) \), \( \left(67, 259\right) \), \( \left(67, -326\right) \), \( \left(77, 399\right) \), \( \left(77, -476\right) \), \( \left(94, 646\right) \), \( \left(94, -740\right) \), \( \left(127, 1174\right) \), \( \left(127, -1301\right) \), \( \left(178, 2116\right) \), \( \left(178, -2294\right) \), \( \left(262, 3964\right) \), \( \left(262, -4226\right) \), \( \left(457, 9424\right) \), \( \left(457, -9881\right) \), \( \left(919, 27310\right) \), \( \left(919, -28229\right) \), \( \left(1172, 39454\right) \), \( \left(1172, -40626\right) \), \( \left(3202, 179524\right) \), \( \left(3202, -182726\right) \), \( \left(4252, 275074\right) \), \( \left(4252, -279326\right) \), \( \left(183079, 78243646\right) \), \( \left(183079, -78426725\right) \)
Invariants
Conductor: | $N$ | = | \( 90090 \) | = | $2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 11 \cdot 13$ |
|
Discriminant: | $\Delta$ | = | $1826146822500$ | = | $2^{2} \cdot 3^{6} \cdot 5^{4} \cdot 7^{2} \cdot 11^{2} \cdot 13^{2} $ |
|
j-invariant: | $j$ | = | \( \frac{17675559395649}{2505002500} \) | = | $2^{-2} \cdot 3^{3} \cdot 5^{-4} \cdot 7^{-2} \cdot 11^{-2} \cdot 13^{-2} \cdot 19^{3} \cdot 457^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $1.0786621930348240477649157839$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.52935604870076920206729316544$ |
|
||
$abc$ quality: | $Q$ | ≈ | $0.904026026242857$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $3.251493899335216$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 2$ |
|
Mordell-Weil rank: | $r$ | = | $ 2$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $0.68360976224694416121448306962$ |
|
Real period: | $\Omega$ | ≈ | $0.80235553945028333069340857472$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 256 $ = $ 2\cdot2^{2}\cdot2^{2}\cdot2\cdot2\cdot2 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $4$ |
|
Special value: | $ L^{(2)}(E,1)/2!$ | ≈ | $8.7759692729780290274117220491 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 8.775969273 \approx L^{(2)}(E,1)/2! & \overset{?}{=} \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.802356 \cdot 0.683610 \cdot 256}{4^2} \\ & \approx 8.775969273\end{aligned}$$
Modular invariants
Modular form 90090.2.a.bl
For more coefficients, see the Downloads section to the right.
Modular degree: | 229376 |
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 6 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $2$ | $I_{2}$ | nonsplit multiplicative | 1 | 1 | 2 | 2 |
$3$ | $4$ | $I_0^{*}$ | additive | -1 | 2 | 6 | 0 |
$5$ | $4$ | $I_{4}$ | split multiplicative | -1 | 1 | 4 | 4 |
$7$ | $2$ | $I_{2}$ | nonsplit multiplicative | 1 | 1 | 2 | 2 |
$11$ | $2$ | $I_{2}$ | split multiplicative | -1 | 1 | 2 | 2 |
$13$ | $2$ | $I_{2}$ | nonsplit multiplicative | 1 | 1 | 2 | 2 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2Cs | 2.6.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 24024 = 2^{3} \cdot 3 \cdot 7 \cdot 11 \cdot 13 \), index $48$, genus $0$, and generators
$\left(\begin{array}{rr} 2005 & 8010 \\ 16008 & 24019 \end{array}\right),\left(\begin{array}{rr} 12937 & 16020 \\ 9858 & 8017 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 3433 & 8010 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 20023 & 8010 \\ 16014 & 16015 \end{array}\right),\left(\begin{array}{rr} 24021 & 4 \\ 24020 & 5 \end{array}\right),\left(\begin{array}{rr} 4369 & 16020 \\ 16746 & 8017 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 4 & 1 \end{array}\right),\left(\begin{array}{rr} 16015 & 0 \\ 0 & 24023 \end{array}\right)$.
The torsion field $K:=\Q(E[24024])$ is a degree-$1071246842265600$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/24024\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | nonsplit multiplicative | $4$ | \( 9 = 3^{2} \) |
$3$ | additive | $6$ | \( 10010 = 2 \cdot 5 \cdot 7 \cdot 11 \cdot 13 \) |
$5$ | split multiplicative | $6$ | \( 18018 = 2 \cdot 3^{2} \cdot 7 \cdot 11 \cdot 13 \) |
$7$ | nonsplit multiplicative | $8$ | \( 12870 = 2 \cdot 3^{2} \cdot 5 \cdot 11 \cdot 13 \) |
$11$ | split multiplicative | $12$ | \( 8190 = 2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 13 \) |
$13$ | nonsplit multiplicative | $14$ | \( 6930 = 2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 11 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2.
Its isogeny class 90090bp
consists of 4 curves linked by isogenies of
degrees dividing 4.
Twists
The minimal quadratic twist of this elliptic curve is 10010m2, its twist by $-3$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z \oplus \Z/{2}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$4$ | \(\Q(\sqrt{6}, \sqrt{14})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$4$ | \(\Q(\sqrt{-6}, \sqrt{-286})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$4$ | \(\Q(\sqrt{-21}, \sqrt{-429})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | deg 8 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$16$ | deg 16 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | nonsplit | add | split | nonsplit | split | nonsplit | ord | ord | ss | ord | ss | ord | ord | ord | ss |
$\lambda$-invariant(s) | 3 | - | 3 | 2 | 3 | 2 | 2 | 2 | 2,2 | 2 | 2,2 | 2 | 2 | 2 | 2,2 |
$\mu$-invariant(s) | 1 | - | 0 | 0 | 0 | 0 | 0 | 0 | 0,0 | 0 | 0,0 | 0 | 0 | 0 | 0,0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.