Show commands: SageMath
Rank
The elliptic curves in class 8925d have rank \(0\).
L-function data
| Bad L-factors: |
| ||||||||||||||||||||||||
| Good L-factors: |
| ||||||||||||||||||||||||
| See L-function page for more information | |||||||||||||||||||||||||
Complex multiplication
The elliptic curves in class 8925d do not have complex multiplication.Modular form 8925.2.a.d
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with Cremona labels.
Elliptic curves in class 8925d
| LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
|---|---|---|---|---|---|---|---|---|
| 8925.v4 | 8925d1 | \([1, 1, 0, 350, 4375]\) | \(302111711/669375\) | \(-10458984375\) | \([2]\) | \(6144\) | \(0.60672\) | \(\Gamma_0(N)\)-optimal |
| 8925.v3 | 8925d2 | \([1, 1, 0, -2775, 45000]\) | \(151334226289/28676025\) | \(448062890625\) | \([2, 2]\) | \(12288\) | \(0.95330\) | |
| 8925.v2 | 8925d3 | \([1, 1, 0, -13400, -560625]\) | \(17032120495489/1339001685\) | \(20921901328125\) | \([2]\) | \(24576\) | \(1.2999\) | |
| 8925.v1 | 8925d4 | \([1, 1, 0, -42150, 3313125]\) | \(530044731605089/26309115\) | \(411079921875\) | \([4]\) | \(24576\) | \(1.2999\) |