Properties

Label 89232.q
Number of curves $4$
Conductor $89232$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("q1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 89232.q have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 + T\)
\(11\)\(1 + T\)
\(13\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 5 T^{2}\) 1.5.a
\(7\) \( 1 - 2 T + 7 T^{2}\) 1.7.ac
\(17\) \( 1 + 6 T + 17 T^{2}\) 1.17.g
\(19\) \( 1 + 4 T + 19 T^{2}\) 1.19.e
\(23\) \( 1 + 6 T + 23 T^{2}\) 1.23.g
\(29\) \( 1 - 6 T + 29 T^{2}\) 1.29.ag
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 89232.q do not have complex multiplication.

Modular form 89232.2.a.q

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} + 2 q^{7} + q^{9} - q^{11} - 6 q^{17} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 3 & 6 \\ 2 & 1 & 6 & 3 \\ 3 & 6 & 1 & 2 \\ 6 & 3 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 89232.q

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
89232.q1 89232y3 \([0, -1, 0, -217728, 39026688]\) \(57736239625/255552\) \(5052418840854528\) \([2]\) \(622080\) \(1.8655\)  
89232.q2 89232y4 \([0, -1, 0, -109568, 77704704]\) \(-7357983625/127552392\) \(-2521788553941516288\) \([2]\) \(1244160\) \(2.2121\)  
89232.q3 89232y1 \([0, -1, 0, -14928, -657216]\) \(18609625/1188\) \(23487484280832\) \([2]\) \(207360\) \(1.3162\) \(\Gamma_0(N)\)-optimal
89232.q4 89232y2 \([0, -1, 0, 12112, -2798784]\) \(9938375/176418\) \(-3487891415703552\) \([2]\) \(414720\) \(1.6628\)