Properties

Label 88752x
Number of curves $1$
Conductor $88752$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("x1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 88752x1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 - T\)
\(43\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 2 T + 5 T^{2}\) 1.5.c
\(7\) \( 1 + 2 T + 7 T^{2}\) 1.7.c
\(11\) \( 1 - T + 11 T^{2}\) 1.11.ab
\(13\) \( 1 + 4 T + 13 T^{2}\) 1.13.e
\(17\) \( 1 - T + 17 T^{2}\) 1.17.ab
\(19\) \( 1 + T + 19 T^{2}\) 1.19.b
\(23\) \( 1 - 4 T + 23 T^{2}\) 1.23.ae
\(29\) \( 1 + 4 T + 29 T^{2}\) 1.29.e
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 88752x do not have complex multiplication.

Modular form 88752.2.a.x

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} - 3 q^{5} - q^{7} + q^{9} + q^{11} + q^{13} + 3 q^{15} + 4 q^{17} + q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 88752x

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
88752.b1 88752x1 \([0, -1, 0, -1305365032, 18153667670896]\) \(-9500554530751882177/199908972324\) \(-5176103693567988760068096\) \([]\) \(33707520\) \(3.8602\) \(\Gamma_0(N)\)-optimal