Properties

Label 88752.e
Number of curves $1$
Conductor $88752$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("e1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 88752.e1 has rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 + T\)
\(43\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + T + 5 T^{2}\) 1.5.b
\(7\) \( 1 - T + 7 T^{2}\) 1.7.ab
\(11\) \( 1 + 3 T + 11 T^{2}\) 1.11.d
\(13\) \( 1 + T + 13 T^{2}\) 1.13.b
\(17\) \( 1 + 2 T + 17 T^{2}\) 1.17.c
\(19\) \( 1 - T + 19 T^{2}\) 1.19.ab
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 + T + 29 T^{2}\) 1.29.b
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 88752.e do not have complex multiplication.

Modular form 88752.2.a.e

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} - q^{5} + q^{7} + q^{9} - 3 q^{11} - q^{13} + q^{15} - 2 q^{17} + q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 88752.e

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
88752.e1 88752k1 \([0, -1, 0, 1404624, 38733534144]\) \(148877/314928\) \(-648316871033020794077184\) \([]\) \(6538752\) \(3.2480\) \(\Gamma_0(N)\)-optimal