Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2=x^3-x^2-1133x-14363\)
|
(homogenize, simplify) |
\(y^2z=x^3-x^2z-1133xz^2-14363z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-91800x-10746000\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(71, 508)$ | $3.4613993212708266604988139251$ | $\infty$ |
Integral points
\((71,\pm 508)\)
Invariants
Conductor: | $N$ | = | \( 8800 \) | = | $2^{5} \cdot 5^{2} \cdot 11$ |
|
Discriminant: | $\Delta$ | = | $-704000000$ | = | $-1 \cdot 2^{12} \cdot 5^{6} \cdot 11 $ |
|
j-invariant: | $j$ | = | \( -\frac{2515456}{11} \) | = | $-1 \cdot 2^{9} \cdot 11^{-1} \cdot 17^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $0.55079571569722242111683482693$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.94707042107977307560077696114$ |
|
||
$abc$ quality: | $Q$ | ≈ | $0.8595697483395592$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $3.6025170553078305$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
Mordell-Weil rank: | $r$ | = | $ 1$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $3.4613993212708266604988139251$ |
|
Real period: | $\Omega$ | ≈ | $0.41130738592293054525476301929$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 2 $ = $ 2\cdot1\cdot1 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $1$ |
|
Special value: | $ L'(E,1)$ | ≈ | $2.8473982129346195068860012711 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 2.847398213 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.411307 \cdot 3.461399 \cdot 2}{1^2} \\ & \approx 2.847398213\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
Modular degree: | 4480 |
|
$ \Gamma_0(N) $-optimal: | yes | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 3 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $2$ | $III^{*}$ | additive | -1 | 5 | 12 | 0 |
$5$ | $1$ | $I_0^{*}$ | additive | 1 | 2 | 6 | 0 |
$11$ | $1$ | $I_{1}$ | split multiplicative | -1 | 1 | 1 | 1 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$.
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has label 22.2.0.a.1, level \( 22 = 2 \cdot 11 \), index $2$, genus $0$, and generators
$\left(\begin{array}{rr} 1 & 1 \\ 21 & 0 \end{array}\right),\left(\begin{array}{rr} 1 & 2 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 2 & 1 \end{array}\right),\left(\begin{array}{rr} 21 & 2 \\ 20 & 3 \end{array}\right),\left(\begin{array}{rr} 13 & 2 \\ 13 & 3 \end{array}\right)$.
The torsion field $K:=\Q(E[22])$ is a degree-$39600$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/22\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | additive | $2$ | \( 275 = 5^{2} \cdot 11 \) |
$5$ | additive | $14$ | \( 352 = 2^{5} \cdot 11 \) |
$11$ | split multiplicative | $12$ | \( 800 = 2^{5} \cdot 5^{2} \) |
Isogenies
This curve has no rational isogenies. Its isogeny class 8800.i consists of this curve only.
Twists
The minimal quadratic twist of this elliptic curve is 352.c1, its twist by $-20$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$3$ | 3.1.44.1 | \(\Z/2\Z\) | not in database |
$6$ | 6.0.21296.1 | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$8$ | deg 8 | \(\Z/3\Z\) | not in database |
$12$ | deg 12 | \(\Z/4\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | add | ord | add | ord | split | ord | ss | ord | ord | ord | ord | ord | ord | ord | ord |
$\lambda$-invariant(s) | - | 1 | - | 1 | 2 | 1 | 1,1 | 3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
$\mu$-invariant(s) | - | 0 | - | 0 | 0 | 0 | 0,0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
Note: $p$-adic regulator data only exists for primes $p\ge 5$ of good ordinary reduction.