Properties

Label 87616l
Number of curves $2$
Conductor $87616$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("l1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 87616l have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(37\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 + T + 3 T^{2}\) 1.3.b
\(5\) \( 1 + 4 T + 5 T^{2}\) 1.5.e
\(7\) \( 1 - 3 T + 7 T^{2}\) 1.7.ad
\(11\) \( 1 - 5 T + 11 T^{2}\) 1.11.af
\(13\) \( 1 + 13 T^{2}\) 1.13.a
\(17\) \( 1 - 6 T + 17 T^{2}\) 1.17.ag
\(19\) \( 1 + 2 T + 19 T^{2}\) 1.19.c
\(23\) \( 1 + 6 T + 23 T^{2}\) 1.23.g
\(29\) \( 1 + 6 T + 29 T^{2}\) 1.29.g
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 87616l do not have complex multiplication.

Modular form 87616.2.a.l

Copy content sage:E.q_eigenform(10)
 
\(q + 2 q^{3} - 3 q^{5} - 4 q^{7} + q^{9} + 6 q^{11} - 2 q^{13} - 6 q^{15} + 3 q^{17} - 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 87616l

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
87616.bm1 87616l1 \([0, -1, 0, -4119777, 3241034081]\) \(-8398297/64\) \(-58929626493994663936\) \([]\) \(4091904\) \(2.6235\) \(\Gamma_0(N)\)-optimal
87616.bm2 87616l2 \([0, -1, 0, 12089183, 17229366561]\) \(212207543/262144\) \(-241375750119402143481856\) \([]\) \(12275712\) \(3.1728\)