Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2=x^3-x^2+8831x+337281\)
|
(homogenize, simplify) |
\(y^2z=x^3-x^2z+8831xz^2+337281z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3+715284x+248023728\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(-309/25, 59436/125)$ | $7.2726141548699272090249618237$ | $\infty$ |
Integral points
None
Invariants
Conductor: | $N$ | = | \( 87616 \) | = | $2^{6} \cdot 37^{2}$ |
|
Discriminant: | $\Delta$ | = | $-94076963651584$ | = | $-1 \cdot 2^{36} \cdot 37^{2} $ |
|
j-invariant: | $j$ | = | \( \frac{212207543}{262144} \) | = | $2^{-18} \cdot 37 \cdot 179^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $1.3673528416331824381734902514$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.27418758131410626668037387596$ |
|
||
$abc$ quality: | $Q$ | ≈ | $0.9847633793256833$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $3.4266612101191827$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
Mordell-Weil rank: | $r$ | = | $ 1$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $7.2726141548699272090249618237$ |
|
Real period: | $\Omega$ | ≈ | $0.40300278423527392131536623370$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 4 $ = $ 2^{2}\cdot1 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $1$ |
|
Special value: | $ L'(E,1)$ | ≈ | $11.723535012325777094177181980 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 11.723535012 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.403003 \cdot 7.272614 \cdot 4}{1^2} \\ & \approx 11.723535012\end{aligned}$$
Modular invariants
Modular form 87616.2.a.bq
For more coefficients, see the Downloads section to the right.
Modular degree: | 331776 |
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 2 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $4$ | $I_{26}^{*}$ | additive | 1 | 6 | 36 | 18 |
$37$ | $1$ | $II$ | additive | 1 | 2 | 2 | 0 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2G | 4.2.0.1 |
$3$ | 3B | 9.12.0.2 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 2664 = 2^{3} \cdot 3^{2} \cdot 37 \), index $288$, genus $6$, and generators
$\left(\begin{array}{rr} 2651 & 2658 \\ 1382 & 1355 \end{array}\right),\left(\begin{array}{rr} 1 & 36 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 36 \\ 12 & 433 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 36 & 1 \end{array}\right),\left(\begin{array}{rr} 2645 & 2637 \\ 2007 & 1520 \end{array}\right),\left(\begin{array}{rr} 1466 & 2637 \\ 2541 & 1951 \end{array}\right),\left(\begin{array}{rr} 1367 & 2628 \\ 1368 & 2627 \end{array}\right),\left(\begin{array}{rr} 1331 & 0 \\ 0 & 2663 \end{array}\right),\left(\begin{array}{rr} 19 & 27 \\ 657 & 2476 \end{array}\right),\left(\begin{array}{rr} 2032 & 2637 \\ 1911 & 1831 \end{array}\right),\left(\begin{array}{rr} 667 & 36 \\ 351 & 649 \end{array}\right),\left(\begin{array}{rr} 2629 & 36 \\ 2628 & 37 \end{array}\right),\left(\begin{array}{rr} 13 & 6 \\ 2614 & 2641 \end{array}\right)$.
The torsion field $K:=\Q(E[2664])$ is a degree-$37784641536$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/2664\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | additive | $2$ | \( 1369 = 37^{2} \) |
$37$ | additive | $254$ | \( 64 = 2^{6} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
3.
Its isogeny class 87616k
consists of 2 curves linked by isogenies of
degree 3.
Twists
The minimal quadratic twist of this elliptic curve is 2738d2, its twist by $8$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{-222}) \) | \(\Z/3\Z\) | not in database |
$3$ | 3.1.5476.1 | \(\Z/2\Z\) | not in database |
$6$ | 6.0.119946304.2 | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$6$ | 6.2.319536953856.3 | \(\Z/3\Z\) | not in database |
$6$ | 6.0.3834443446272.3 | \(\Z/6\Z\) | not in database |
$12$ | deg 12 | \(\Z/4\Z\) | not in database |
$12$ | deg 12 | \(\Z/3\Z \oplus \Z/3\Z\) | not in database |
$12$ | deg 12 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$18$ | 18.0.341279043853508155010657115872939933851189248.2 | \(\Z/9\Z\) | not in database |
$18$ | 18.2.2088061309474744886459266094044545024.1 | \(\Z/6\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | add | ord | ord | ord | ord | ord | ord | ord | ord | ord | ord | add | ord | ord | ord |
$\lambda$-invariant(s) | - | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | - | 1 | 1 | 1 |
$\mu$-invariant(s) | - | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | - | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.